These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11800034)

  • 1. Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Dec; 187(10):769-84. PubMed ID: 11800034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):201-15. PubMed ID: 14727134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
    Zill SN; Keller BR; Duke ER
    J Neurophysiol; 2009 May; 101(5):2297-304. PubMed ID: 19261716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
    Zill SN; Dallmann CJ; S Szczecinski N; Büschges A; Schmitz J
    J Neurophysiol; 2021 Jul; 126(1):227-248. PubMed ID: 34107221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches.
    Keller BR; Duke ER; Amer AS; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Aug; 193(8):881-91. PubMed ID: 17541783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force encoding in stick insect legs delineates a reference frame for motor control.
    Zill SN; Schmitz J; Chaudhry S; Büschges A
    J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
    Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A
    Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
    Ridgel AL; Frazier SF; DiCaprio RA; Zill SN
    J Comp Physiol A; 2000 Apr; 186(4):359-74. PubMed ID: 10798724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.
    Quimby LA; Amer AS; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Mar; 192(3):247-66. PubMed ID: 16362305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches.
    Ridgel AL; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Jun; 187(5):405-20. PubMed ID: 11529484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
    Zill SN; Dallmann CJ; Zyhowski W; Chaudhry H; Gebehart C; Szczecinski NS
    J Neurophysiol; 2024 Feb; 131(2):198-215. PubMed ID: 38166479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of leg touchdown for the control of locomotor activity in the walking stick insect.
    Schmitz J; Gruhn M; Büschges A
    J Neurophysiol; 2015 Apr; 113(7):2309-20. PubMed ID: 25652931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central connections and actions during walking of tibial campaniform sensilla in the locust.
    Newland PL; Emptage NJ
    J Comp Physiol A; 1996 Jun; 178(6):749-62. PubMed ID: 8667289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational model of insect campaniform sensilla predicts encoding of forces during walking.
    Szczecinski NS; Dallmann CJ; Quinn RD; Zill SN
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34384067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking on a 'peg leg': extensor muscle activities and sensory feedback after distal leg denervation in cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):217-31. PubMed ID: 14727135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies.
    Harris CM; Szczecinski NS; Büschges A; Zill SN
    J Neurophysiol; 2022 Oct; 128(4):790-807. PubMed ID: 36043841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A load-based mechanism for inter-leg coordination in insects.
    Dallmann CJ; Hoinville T; Dürr V; Schmitz J
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29187626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Nov; 191(11):1037-54. PubMed ID: 16258746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active signaling of leg loading and unloading in the cockroach.
    Ridgel AL; Frazier SF; Dicaprio RA; Zill SN
    J Neurophysiol; 1999 Mar; 81(3):1432-7. PubMed ID: 10085370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
    Zill SN; Büschges A; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.