These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11800116)

  • 1. Temperature processing of an ultra stable quartz oscillator.
    Galliou S; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1539-46. PubMed ID: 11800116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 300-MHz digitally compensated SAW oscillator.
    Cowan WD; Slobodnik AR; Roberts GA; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):380-5. PubMed ID: 18290163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transient model of a crystal resonator employing thickness-shear vibrations.
    Shmaliy YS; Kurochka OH; Sokolinskiy EG; Rudnev OE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1396-406. PubMed ID: 18244335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modulational method of quartz crystal oscillator frequency stabilization.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1476-84. PubMed ID: 18249995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Does Ambient Temperature Fluctuation Influence the Short-Term Frequency Stability of OCXO?
    Xu L; Ye P; Liao S; Chen C; Tan F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Aug; 70(8):893-902. PubMed ID: 37307175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of thermosensitive quartz sensor for thermal regulation at cryogenic temperatures: application to microwave sapphire resonator references.
    Kersale Y; Lardet-Vieudrin F; Chaubet M; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):427-31. PubMed ID: 18238560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ±0.3 ppm Oven-Controlled MEMS Oscillator Using Structural Resistance-Based Temperature Sensing.
    Liu CS; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1492-1499. PubMed ID: 29993545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next generation AT-cut quartz crystal sensing devices.
    Matko V
    Sensors (Basel); 2011; 11(5):4474-82. PubMed ID: 22163858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Quartz Crystals Connected in Parallel for High-Resolution Sensing of Capacitance Changes.
    Matko V
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short- and long-term stability of resonant quartz temperature sensors.
    Spassov L; Gadjanova V; Velcheva R; Dulmet B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1626-31. PubMed ID: 18986952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method to Increase the Frequency Stability of a TCXO by Compensating Thermal Hysteresis.
    Wang Z; Wu J
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 10 MHz oscillator working with an LGT crystal resonator: preliminary results.
    Imbaud J; Galliou S; Romand JP; Abbe P; Bourquin R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1913-20. PubMed ID: 18986888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fully Integrated Quartz MEMS VHF TCXO.
    Kubena RL; Stratton FP; Nguyen HD; Kirby DJ; Chang DT; Joyce RJ; Yong YK; Garstecki JF; Cross MD; Seman SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):904-910. PubMed ID: 29856706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lam e-mode miniaturized quartz temperature sensors.
    Kanie H; Kawaehima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz crystal resonator g sensitivity measurement methods and recent results.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):386-92. PubMed ID: 18285055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution switching mode inductance-to-frequency converter with temperature compensation.
    Matko V; Milanović M
    Sensors (Basel); 2014 Oct; 14(10):19242-59. PubMed ID: 25325334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.