These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11800124)

  • 41. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.
    Smithmaitrie P; Suybangdum P; Laoratanakul P; Muensit N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):1033-42. PubMed ID: 22622989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.
    Bolborici V; Dawson FP; Pugh MC
    Ultrasonics; 2014 Mar; 54(3):809-20. PubMed ID: 24210273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contact analysis and performance evaluation of ring type traveling wave ultrasonic motors based on a surface contact model.
    Jiang C; Zhao Z; Lu D; Xu Z; Jin L
    Ultrasonics; 2023 Jan; 127():106851. PubMed ID: 36183496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Multi-Point Contact Model Considering Rough Surface for Linear Ultrasonic Motors: Validation and Simulation.
    He Y; Yao Z; Xu H
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure.
    Wang J; Guo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1054-8. PubMed ID: 19473923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An efficient approach to optimize the vibration mode of bar-type ultrasonic motors.
    Zhu H; Li Z; Zhao C
    Ultrasonics; 2010 Apr; 50(4-5):491-5. PubMed ID: 19926107
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
    Nakagawa Y; Saito A; Maeno T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):717-25. PubMed ID: 18407861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated performance improvement for a bimodal linear ultrasonic motor using a dual-frequency asymmetric excitation method.
    Li X; Huang Y; Zhou L
    Ultrasonics; 2020 Dec; 108():106224. PubMed ID: 32659500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modal analysis and moving performance of a single-mode linear ultrasonic motor.
    Yin Z; Dai C; Cao Z; Li W; Chen Z; Li C
    Ultrasonics; 2020 Dec; 108():106216. PubMed ID: 32629150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of a hybrid transducer-type ultrasonic motor.
    Nakamura K; Kurosawa M; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):188-93. PubMed ID: 18267574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study on the compound multifrequency ultrasonic transducer in flexural vibration.
    Xian X; Lin S
    Ultrasonics; 2008 Jul; 48(3):202-8. PubMed ID: 18267322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental research on the evolution characteristics of a bending hybrid ultrasonic motor during long-time operation.
    Li H; Deng J; Liu Y
    Ultrasonics; 2023 May; 131():106957. PubMed ID: 36812818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Note: Performance estimation of a rotary ultrasonic motor based on two-dimensional analytical model.
    Li C; Min R; Lu C
    Rev Sci Instrum; 2018 Oct; 89(10):106104. PubMed ID: 30399844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics and temperature field analysis of piezoelectric driven three-stator multi-degree-of-freedom ultrasonic motor.
    Li Z; Chen X; Guo Z; Su Z; Han H; Zhao H; Sun H
    Ultrasonics; 2022 Feb; 119():106632. PubMed ID: 34717143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A piezoelectric ultrasonic linear micromotor using a slotted stator.
    Yun CH; Watson B; Friend J; Yeo L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1868-74. PubMed ID: 20679016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling and verification of life prediction of a V-shaped linear ultrasonic motor.
    Zhou L; Yao Z; Dai S; He Y; Xu H
    Rev Sci Instrum; 2021 Apr; 92(4):045003. PubMed ID: 34243437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contact analysis and experimental investigation of a linear ultrasonic motor.
    Lv Q; Yao Z; Li X
    Ultrasonics; 2017 Nov; 81():32-38. PubMed ID: 28577413
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elastic contact conditions to optimize friction drive of surface acoustic wave motor.
    Kuribayashi Kurosawa M; Takahashi M; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of Longitudinal-Torsional Transducer and Directivity Analysis during Ultrasonic Vibration-Assisted Milling of Honeycomb Aramid Material.
    Zhang M; Ma Z; Wang X; Meng T; Li X
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557453
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel L-shaped linear ultrasonic motor operating in a single resonance mode.
    Zhang B; Yao Z; Liu Z; Li X
    Rev Sci Instrum; 2018 Jan; 89(1):015006. PubMed ID: 29390645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.