These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11800124)

  • 81. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.
    Cai K; Zhang X; Shi J; Qin QH
    Nanotechnology; 2017 Apr; 28(15):155701. PubMed ID: 28303802
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Dynamic modeling and analysis of a bonded-type ultrasonic motor considering the load transfer in adhesive interlayer.
    He Y; Yao Z; Zhou L; Dai S; Xu H
    Rev Sci Instrum; 2021 Oct; 92(10):105003. PubMed ID: 34717409
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A novel
    Jian Y; Yao Z; Zhang B; Liu Z
    Rev Sci Instrum; 2018 Dec; 89(12):125010. PubMed ID: 30599615
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Friction Reduction through Ultrasonic Vibration Part 1: Modelling Intermittent Contact.
    Vezzoli E; Vidrih Z; Giamundo V; Lemaire-Semail B; Giraud F; Rodic T; Peric D; Adams M
    IEEE Trans Haptics; 2017; 10(2):196-207. PubMed ID: 28222002
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
    Qian KX; Wan FK; Ru WM; Zeng P; Yuan HY
    J Med Eng Technol; 2006; 30(2):78-82. PubMed ID: 16531346
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Performance analysis and experimental study of traveling wave type rotary ultrasonic motor in high-rotation environment.
    Chen H; Chen C; Wang J; Shi M
    Rev Sci Instrum; 2018 Nov; 89(11):115004. PubMed ID: 30501289
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A ring-type multi-DOF ultrasonic motor with four feet driving consistently.
    Shi S; Xiong H; Liu Y; Chen W; Liu J
    Ultrasonics; 2017 Apr; 76():234-244. PubMed ID: 28152497
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.
    Liu Y; Liu J; Chen W; Shi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):981-9. PubMed ID: 22622983
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Design and construction of shaft-driving type piezoceramic ultrasonic motor.
    Wen FL; Mou SC; Ouyang M
    Ultrasonics; 2004 Oct; 43(1):35-47. PubMed ID: 15358527
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Dynamic modeling and analysis of a bimodal ultrasonic motor.
    Tsai MS; Lee CH; Hwang SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):245-56. PubMed ID: 12699158
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Design and implementation of spherical ultrasonic motor.
    Mashimo T; Toyama S; Ishida H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2514-21. PubMed ID: 19942537
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Optimum contact conditions for miniaturized surface acoustic wave linear motor.
    Takasaki M; Kurosawa MK; Higuchi T
    Ultrasonics; 2000 Mar; 38(1-8):51-3. PubMed ID: 10829627
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators.
    Kuribayashi Kurosawa M; Kodaira O; Tsuchitoi Y; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1188-95. PubMed ID: 18244278
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode.
    Fu Z; Xian X; Lin S; Wang C; Hu W; Li G
    Ultrasonics; 2012 Jul; 52(5):578-86. PubMed ID: 22273150
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.
    Liu Y; Chen W; Liu J; Shi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):777-85. PubMed ID: 23549538
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Design of a hybrid transducer type ultrasonic motor.
    Nakamura K; Kurosawa M; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):395-401. PubMed ID: 18263196
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli.
    Yakushi T; Yang J; Fukuoka H; Homma M; Blair DF
    J Bacteriol; 2006 Feb; 188(4):1466-72. PubMed ID: 16452430
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Design and experiments of a linear piezoelectric motor driven by a single mode.
    Liu Z; Yao Z; Li X; Fu Q
    Rev Sci Instrum; 2016 Nov; 87(11):115001. PubMed ID: 27910463
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A nanoengine governor based on the end interfacial effect.
    Shi J; Cai K; Qin QH
    Nanotechnology; 2016 Dec; 27(49):495704. PubMed ID: 27827349
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Research on a Novel Exciting Method for a Sandwich Transducer Operating in Longitudinal-Bending Hybrid Modes.
    Liu Y; Shen Q; Shi S; Deng J; Chen W; Wang L
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.