These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11800382)
1. Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Lavid N; Schwartz A; Lewinsohn E; Tel-Or E Planta; 2001 Dec; 214(2):189-95. PubMed ID: 11800382 [TBL] [Abstract][Full Text] [Related]
2. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Lavid N; Schwartz A; Yarden O; Tel-Or E Planta; 2001 Feb; 212(3):323-31. PubMed ID: 11289596 [TBL] [Abstract][Full Text] [Related]
3. Characterization of cadmium uptake by the water lily Nymphaea aurora. Schor-Fumbarov T; Keilin Z; Tel-Or E Int J Phytoremediation; 2003; 5(2):169-79. PubMed ID: 12929498 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae). Lavid N; Barkay Z; Tel-Or E Planta; 2001 Feb; 212(3):313-22. PubMed ID: 11289595 [TBL] [Abstract][Full Text] [Related]
5. Initial decomposition of floating leaf blades of Klok PF; van der Velde G PeerJ; 2023; 11():e16689. PubMed ID: 38144198 [TBL] [Abstract][Full Text] [Related]
6. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium. Fu Y; Li F; Xu T; Cai S; Chu W; Qiu H; Sha S; Cheng G; Xu Q Environ Sci Pollut Res Int; 2014 Feb; 21(4):2935-42. PubMed ID: 24170501 [TBL] [Abstract][Full Text] [Related]
7. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Bai L; Liu XL; Hu J; Li J; Wang ZL; Han G; Li SL; Liu CQ Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30558148 [TBL] [Abstract][Full Text] [Related]
8. Plant traits and environment: floating leaf blade production and turnover of Klok PF; van der Velde G PeerJ; 2022; 10():e13976. PubMed ID: 36068866 [TBL] [Abstract][Full Text] [Related]
9. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities. Santos MS; Pedro CA; Gonçalves SC; Ferreira SM Environ Sci Pollut Res Int; 2015 Oct; 22(20):15598-609. PubMed ID: 26013743 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Cadmium Scavenging Potential of Canna indica L. Solanki P; Narayan M; Rabha AK; Srivastava RK Bull Environ Contam Toxicol; 2018 Oct; 101(4):446-450. PubMed ID: 30116850 [TBL] [Abstract][Full Text] [Related]
12. Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant. Wang Y; Wang QF; Guo YH; Barrett SC New Phytol; 2005 Jan; 165(1):329-35. PubMed ID: 15720644 [TBL] [Abstract][Full Text] [Related]
13. A strategy to potentiate Cd phytoremediation by saltmarsh plants - autochthonous bioaugmentation. Nunes da Silva M; Mucha AP; Rocha AC; Teixeira C; Gomes CR; Almeida CM J Environ Manage; 2014 Feb; 134():136-44. PubMed ID: 24486467 [TBL] [Abstract][Full Text] [Related]
14. Role of ploidy in cadmium and nickel uptake by Matricaria chamomilla plants. Kovácik J; Klejdus B; Grúz J; Malcovská S; Hedbavny J Food Chem Toxicol; 2010; 48(8-9):2109-14. PubMed ID: 20470851 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Ali N; Hadi F Environ Sci Pollut Res Int; 2015 Sep; 22(17):13305-18. PubMed ID: 25940488 [TBL] [Abstract][Full Text] [Related]
16. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. Li J; Yu H; Luan Y Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632 [TBL] [Abstract][Full Text] [Related]
17. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring. Li C; Wang M; Luo X; Liang L; Han X; Lin X J Environ Radioact; 2019 Mar; 198():43-49. PubMed ID: 30590332 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Choo TP; Lee CK; Low KS; Hishamuddin O Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131 [TBL] [Abstract][Full Text] [Related]
19. Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum. Ahmad A; Hadi F; Ali N; Jan AU Environ Sci Pollut Res Int; 2016 Sep; 23(17):17715-29. PubMed ID: 27246561 [TBL] [Abstract][Full Text] [Related]
20. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Solís-Domínguez FA; González-Chávez MC; Carrillo-González R; Rodríguez-Vázquez R J Hazard Mater; 2007 Mar; 141(3):630-6. PubMed ID: 16920257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]