These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 11800488)
1. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Garde A; Jonsson G; Schmidt AS; Ahring BK Bioresour Technol; 2002 Feb; 81(3):217-23. PubMed ID: 11800488 [TBL] [Abstract][Full Text] [Related]
2. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762 [TBL] [Abstract][Full Text] [Related]
3. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Zhang Y; Vadlani PV J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation. Wischral D; Arias JM; Modesto LF; de França Passos D; Pereira N Biotechnol Prog; 2019 Jan; 35(1):e2718. PubMed ID: 30295001 [TBL] [Abstract][Full Text] [Related]
5. Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Moldes AB; Torrado A; Converti A; Domínguez JM Appl Biochem Biotechnol; 2006 Dec; 135(3):219-28. PubMed ID: 17299209 [TBL] [Abstract][Full Text] [Related]
6. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Bustos G; Moldes AB; Cruz JM; Domínguez JM Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258 [TBL] [Abstract][Full Text] [Related]
7. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Cui F; Li Y; Wan C Bioresour Technol; 2011 Jan; 102(2):1831-6. PubMed ID: 20943382 [TBL] [Abstract][Full Text] [Related]
8. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. Wang J; Wang Q; Xu Z; Zhang W; Xiang J J Microbiol Biotechnol; 2015 Jan; 25(1):26-32. PubMed ID: 25152056 [TBL] [Abstract][Full Text] [Related]
9. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid. Tirpanalan Ö; Reisinger M; Smerilli M; Huber F; Neureiter M; Kneifel W; Novalin S Bioresour Technol; 2015 Mar; 180():242-9. PubMed ID: 25616238 [TBL] [Abstract][Full Text] [Related]
10. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Saito K; Hasa Y; Abe H J Biosci Bioeng; 2012 Aug; 114(2):166-9. PubMed ID: 22578599 [TBL] [Abstract][Full Text] [Related]
11. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis. Choi HY; Ryu HK; Park KM; Lee EG; Lee H; Kim SW; Choi ES Bioresour Technol; 2012 Jun; 114():745-7. PubMed ID: 22516247 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
13. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Kim JH; Block DE; Shoemaker SP; Mills DA Appl Microbiol Biotechnol; 2010 May; 86(5):1375-85. PubMed ID: 20084509 [TBL] [Abstract][Full Text] [Related]
14. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Guo W; Jia W; Li Y; Chen S Appl Biochem Biotechnol; 2010 May; 161(1-8):124-36. PubMed ID: 19937398 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Cubas-Cano E; González-Fernández C; Tomás-Pejó E Bioresour Technol; 2019 Sep; 288():121540. PubMed ID: 31174085 [TBL] [Abstract][Full Text] [Related]
16. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Kuo YC; Yuan SF; Wang CA; Huang YJ; Guo GL; Hwang WS Bioresour Technol; 2015 Dec; 198():651-7. PubMed ID: 26433790 [TBL] [Abstract][Full Text] [Related]
17. Efficient utilization of hydrolysates from steam-exploded gardening residues for lactic acid production by optimization of enzyme addition and pH control. Cubas-Cano E; González-Fernández C; Ballesteros I; Tomás-Pejó E Waste Manag; 2020 Apr; 107():235-243. PubMed ID: 32325410 [TBL] [Abstract][Full Text] [Related]
18. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion. Moldes AB; Bustos G; Torrado A; Domínguez JM Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452 [TBL] [Abstract][Full Text] [Related]
19. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Prückler M; Lorenz C; Endo A; Kraler M; Dürrschmid K; Hendriks K; Soares da Silva F; Auterith E; Kneifel W; Michlmayr H Food Microbiol; 2015 Aug; 49():211-9. PubMed ID: 25846933 [TBL] [Abstract][Full Text] [Related]
20. Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Yun JS; Wee YJ; Kim JN; Ryu HW Biotechnol Lett; 2004 Oct; 26(20):1613-6. PubMed ID: 15604807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]