These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 11800488)
21. Modeling the continuous lactic acid production process from wheat flour. Gonzalez K; Tebbani S; Lopes F; Thorigné A; Givry S; Dumur D; Pareau D Appl Microbiol Biotechnol; 2016 Jan; 100(1):147-59. PubMed ID: 26399412 [TBL] [Abstract][Full Text] [Related]
22. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273 [TBL] [Abstract][Full Text] [Related]
23. Fermentation of sugar cane bagasse hemicellulose hydrolysate to L(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Patel M; Ou M; Ingram LO; Shanmugam KT Biotechnol Lett; 2004 Jun; 26(11):865-8. PubMed ID: 15269531 [TBL] [Abstract][Full Text] [Related]
24. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Nigam JN J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696 [TBL] [Abstract][Full Text] [Related]
25. Sustainable wheat straw pretreatment process by self-produced and cyclical crude lactic acid. Jin X; Liu P; Li H; Yu H; Ouyang J; Zheng Z Bioresour Technol; 2024 Jun; 402():130788. PubMed ID: 38703960 [TBL] [Abstract][Full Text] [Related]
26. Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza. Petrova P; Emanuilova M; Petrov K Z Naturforsch C J Biosci; 2010; 65(3-4):218-24. PubMed ID: 20469641 [TBL] [Abstract][Full Text] [Related]
27. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [TBL] [Abstract][Full Text] [Related]
28. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation. Hynes SH; Kjarsgaard DM; Thomas KC; Ingledew WM J Ind Microbiol Biotechnol; 1997 Apr; 18(4):284-91. PubMed ID: 9172435 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Martorana A; Alfonzo A; Gaglio R; Settanni L; Corona O; La Croce F; Vagnoli P; Caruso T; Moschetti G; Francesca N Food Microbiol; 2017 Feb; 61():150-158. PubMed ID: 27697165 [TBL] [Abstract][Full Text] [Related]
30. Microbial production of biopolymers from the renewable resource wheat straw. Gasser E; Ballmann P; Dröge S; Bohn J; König H J Appl Microbiol; 2014 Oct; 117(4):1035-44. PubMed ID: 24947657 [TBL] [Abstract][Full Text] [Related]
31. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Panagiotou G; Olsson L Biotechnol Bioeng; 2007 Feb; 96(2):250-8. PubMed ID: 16865730 [TBL] [Abstract][Full Text] [Related]
32. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Zhu Y; Lee YY; Elander RT Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429 [TBL] [Abstract][Full Text] [Related]
33. Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production. Marzo C; Díaz AB; Caro I; Blandino A J Sci Food Agric; 2021 Aug; 101(10):4108-4117. PubMed ID: 33368320 [TBL] [Abstract][Full Text] [Related]
34. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Rosgaard L; Pedersen S; Meyer AS Appl Biochem Biotechnol; 2007 Dec; 143(3):284-96. PubMed ID: 18057455 [TBL] [Abstract][Full Text] [Related]
35. Minerals and organic nitrogen present in grape marc hydrolyzates enhance xylose consumption by Lactobacillus pentosus. Rivera OM; Torrado AM; Moldes AB; Domínguez JM Appl Biochem Biotechnol; 2009 Feb; 152(2):262-74. PubMed ID: 18581267 [TBL] [Abstract][Full Text] [Related]
36. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Saha BC; Nakamura LK Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154 [TBL] [Abstract][Full Text] [Related]
37. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Hu J; Lin Y; Zhang Z; Xiang T; Mei Y; Zhao S; Liang Y; Peng N Bioresour Technol; 2016 Aug; 214():74-80. PubMed ID: 27128191 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. Berlowska J; Cieciura W; Borowski S; Dudkiewicz M; Binczarski M; Witonska I; Otlewska A; Kregiel D Molecules; 2016 Oct; 21(10):. PubMed ID: 27763527 [TBL] [Abstract][Full Text] [Related]
39. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Klinke HB; Olsson L; Thomsen AB; Ahring BK Biotechnol Bioeng; 2003 Mar; 81(6):738-47. PubMed ID: 12529889 [TBL] [Abstract][Full Text] [Related]
40. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Eom IY; Oh YH; Park SJ; Lee SH; Yu JH Bioresour Technol; 2015 Jun; 185():143-9. PubMed ID: 25768416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]