BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 11800597)

  • 1. Disposition of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'- (methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)- 1H-pyrazole-5-carboxamide (DPC 423) by novel metabolic pathways. Characterization of unusual metabolites by liquid chromatography/mass spectrometry and NMR.
    Mutlib AE; Shockcor J; Chen SY; Espina RJ; Pinto DJ; Orwat MJ; Prakash SR; Gan LS
    Chem Res Toxicol; 2002 Jan; 15(1):48-62. PubMed ID: 11800597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450-mediated metabolism of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'-(methylsulfonyl)- [1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole- 5-carboxamide (DPC 423) and its analogues to aldoximes. Characterization of glutathione conjugates of postulated intermediates derived from aldoximes.
    Mutlib AE; Chen SY; Espina RJ; Shockcor J; Prakash SR; Gan LS
    Chem Res Toxicol; 2002 Jan; 15(1):63-75. PubMed ID: 11800598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of unusual glutamate conjugates of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC 423) and its analogs: the role of gamma-glutamyltranspeptidase in the biotransformation of benzylamines.
    Mutlib A; Shockcor J; Chen SY; Espina R; Lin J; Graciani N; Prakash S; Gan LS
    Drug Metab Dispos; 2001 Oct; 29(10):1296-306. PubMed ID: 11560873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineating novel metabolic pathways of DPC 963, a non-nucleoside reverse transcriptase inhibitor, in rats. Characterization of glutathione conjugates of postulated oxirene and benzoquinone imine intermediates by LC/MS and LC/NMR.
    Chen H; Shockcor J; Chen W; Espina R; Gan LS; Mutlib AE
    Chem Res Toxicol; 2002 Mar; 15(3):388-99. PubMed ID: 11896687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes.
    Chen WW; Qin GY; Zhang T; Feng WY
    Drug Metab Lett; 2012 Jun; 6(2):73-93. PubMed ID: 22594564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactivation of benzylamine to reactive intermediates in rodents: formation of glutathione, glutamate, and peptide conjugates.
    Mutlib AE; Dickenson P; Chen SY; Espina RJ; Daniels JS; Gan LS
    Chem Res Toxicol; 2002 Sep; 15(9):1190-207. PubMed ID: 12230413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of the new anxiolytic agent, a pyrido[1,2-]benzimidazole (PBI) analog (RWJ-53050), in rat and human hepatic S9 fractions, and in dog; identification of cytochrome p450 isoforms mediated in the human microsomal metabolism.
    Wu WN; McKown LA; Reitz AB
    Eur J Drug Metab Pharmacokinet; 2006; 31(4):277-83. PubMed ID: 17315539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of novel glutathione adducts of a non-nucleoside reverse transcriptase inhibitor, (S)-6-chloro-4-(cyclopropylethynyl)-4-(trifluoromethyl)-3, 4-dihydro-2(1H)-quinazolinone (DPC 961), in rats. Possible formation of an oxirene metabolic intermediate from a disubstituted alkyne.
    Mutlib A; Chen H; Shockcor J; Espina R; Chen S; Cao K; Du A; Nemeth G; Prakash S; Gan LS
    Chem Res Toxicol; 2000 Aug; 13(8):775-84. PubMed ID: 10956066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of the chemoprotective agent diallyl sulfide to glutathione conjugates in rats.
    Jin L; Baillie TA
    Chem Res Toxicol; 1997 Mar; 10(3):318-27. PubMed ID: 9084912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the metabolites of rosmarinic acid in human liver microsomes using liquid chromatography combined with electrospray ionization tandem mass spectrometry.
    Su J; Jia F; Lu J; Chen W; Sun H; Liu T; Wu X
    Biomed Chromatogr; 2020 Apr; 34(4):e4806. PubMed ID: 32012312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic activation of TM5441 in vitro and in vivo: Formation of reactive metabolites and human enzymes involved.
    Lang SQ; Lang WH; Yu HY; Wang L
    Eur J Pharm Sci; 2020 Feb; 143():105195. PubMed ID: 31852629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz.
    Mutlib AE; Chen H; Nemeth GA; Markwalder JA; Seitz SP; Gan LS; Christ DD
    Drug Metab Dispos; 1999 Nov; 27(11):1319-33. PubMed ID: 10534318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel metabolic pathways of pioglitazone in hepatocytes: N-glucuronidation of thiazolidinedione ring and sequential ring-opening pathway.
    Uchiyama M; Fischer T; Mueller J; Oguchi M; Yamamura N; Koda H; Iwabuchi H; Izumi T
    Drug Metab Dispos; 2010 Jun; 38(6):946-56. PubMed ID: 20185540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro metabolism of BIIB021, an inhibitor of heat shock protein 90, in liver microsomes and hepatocytes of rats, dogs, and humans and recombinant human cytochrome P450 isoforms.
    Xu L; Woodward C; Khan S; Prakash C
    Drug Metab Dispos; 2012 Apr; 40(4):680-93. PubMed ID: 22217465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro metabolism of oxymetazoline: evidence for bioactivation to a reactive metabolite.
    Mahajan MK; Uttamsingh V; Daniels JS; Gan LS; LeDuc BW; Williams DA
    Drug Metab Dispos; 2011 Apr; 39(4):693-702. PubMed ID: 21177487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism, pharmacokinetics, and excretion of a cholesteryl ester transfer protein inhibitor, torcetrapib, in rats, monkeys, and mice: characterization of unusual and novel metabolites by high-resolution liquid chromatography-tandem mass spectrometry and 1H nuclear magnetic resonance.
    Prakash C; Chen W; Rossulek M; Johnson K; Zhang C; O'Connell T; Potchoiba M; Dalvie D
    Drug Metab Dispos; 2008 Oct; 36(10):2064-79. PubMed ID: 18653742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of intravenous methylnaltrexone in mice, rats, dogs, and humans.
    Chandrasekaran A; Tong Z; Li H; Erve JC; DeMaio W; Goljer I; McConnell O; Rotshteyn Y; Hultin T; Talaat R; Scatina J
    Drug Metab Dispos; 2010 Apr; 38(4):606-16. PubMed ID: 20053817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the in vitro metabolites of idelalisib in liver microsomes and interspecies comparison.
    Chen CM; Wu WB; Chen JF; Chen Y
    J Pharm Biomed Anal; 2019 Jan; 162():249-256. PubMed ID: 30268993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative metabolism of 14C-labeled apixaban in mice, rats, rabbits, dogs, and humans.
    Zhang D; He K; Raghavan N; Wang L; Mitroka J; Maxwell BD; Knabb RM; Frost C; Schuster A; Hao F; Gu Z; Humphreys WG; Grossman SJ
    Drug Metab Dispos; 2009 Aug; 37(8):1738-48. PubMed ID: 19420130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo metabolism of verproside in rats.
    Kim MG; Hwang DK; Jeong HU; Ji HY; Oh SR; Lee Y; Yoo JS; Shin DH; Lee HS
    Molecules; 2012 Oct; 17(10):11990-2002. PubMed ID: 23085650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.