These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11800675)

  • 1. Noise-enhanced excitability in bistable activator-inhibitor media.
    García-Ojalvo J; Sagués F; Sancho JM; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011105. PubMed ID: 11800675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-induced excitability in oscillatory media.
    Ullner E; Zaikin A; García-Ojalvo J; Kurths J
    Phys Rev Lett; 2003 Oct; 91(18):180601. PubMed ID: 14611273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling.
    Burić N; Todorović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the reliability phenomenon in the FitzHugh-Nagumo model.
    Kosmidis EK; Pakdaman K
    J Comput Neurosci; 2003; 14(1):5-22. PubMed ID: 12435921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model.
    Gong PL; Xu JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031906. PubMed ID: 11308677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection.
    Zemskov EP; Tsyganov MA; Ivanitsky GR; Horsthemke W
    Phys Rev E; 2022 Jan; 105(1-1):014207. PubMed ID: 35193304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplicative-noise-induced coherence resonance via two different mechanisms in bistable neural models.
    Tang J; Jia Y; Yi M; Ma J; Li J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061905. PubMed ID: 18643298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation in a FitzHugh-Nagumo-type model with modified excitability.
    Zemskov EP; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026207. PubMed ID: 20866893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective stochastic resonance of coupled excitable elements under noise of unequal amplitude.
    Kawai R; Awazu A; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021135. PubMed ID: 21928977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delay-sustained pattern formation in subexcitable media.
    Gassel M; Glatt E; Kaiser F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066220. PubMed ID: 18643363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise as control parameter in networks of excitable media: Role of the network topology.
    Kaluza P; Strege C; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036104. PubMed ID: 21230136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave nucleation rate in excitable systems in the low noise limit.
    Henry H; Levine H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031914. PubMed ID: 14524810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse propagation sustained by noise in arrays of bistable electronic circuits.
    Báscones R; García-Ojalvo J; Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061108. PubMed ID: 12188704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-output relation of FitzHugh-Nagumo elements arranged in a trifurcated structure.
    Yanagita T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056215. PubMed ID: 18233747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-sustained propagation of unstable pulses due to exponential interaction between pulse fronts in bistable systems with flows.
    Horikawa Y; Kitajima H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041101. PubMed ID: 20481671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regular wave propagation out of noise in chemical active media.
    Alonso S; Sendiña-Nadal I; Pérez-Muñuzuri V; Sancho JM; Sagués F
    Phys Rev Lett; 2001 Aug; 87(7):078302. PubMed ID: 11497926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcation analysis of solitary and synchronized pulses and formation of reentrant waves in laterally coupled excitable fibers.
    Yanagita T; Suetani H; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056208. PubMed ID: 19113201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: array-enhanced resonances.
    Zhou C; Kurths J; Hu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):030101. PubMed ID: 12689043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.