These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11800717)

  • 1. Diffusion coefficient of propagating fronts with multiplicative noise.
    Rocco A; Casademunt J; Ebert U; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):012102. PubMed ID: 11800717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subdiffusive fluctuations of "pulled" fronts with multiplicative noise.
    Rocco A; Ebert U; Saarloos W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):R13-6. PubMed ID: 11088513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity fluctuations of population fronts propagating into metastable states.
    Meerson B; Sasorov PV; Kaplan Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011147. PubMed ID: 21867152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: Strongly pushed fronts.
    Khain E; Meerson B; Sasorov P
    Phys Rev E; 2020 Aug; 102(2-1):022137. PubMed ID: 32942446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations.
    Rocco A; Ramírez-Piscina L; Casademunt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056116. PubMed ID: 12059656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative velocity fluctuations of pulled reaction fronts.
    Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):030101. PubMed ID: 22060316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of fluctuating traveling front solutions in macroscopic theory of noisy invasion fronts.
    Meerson B; Vilenkin A; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012117. PubMed ID: 23410293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of environmental fluctuations on invasion fronts.
    Méndez V; Llopis I; Campos D; Horsthemke W
    J Theor Biol; 2011 Jul; 281(1):31-8. PubMed ID: 21549716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymptotic scaling of the diffusion coefficient of fluctuating "pulled" fronts.
    Panja D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065202. PubMed ID: 14754253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly pushed nature of "pulled" fronts with a cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057202. PubMed ID: 12059760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-time random walks and traveling fronts.
    Fedotov S; Méndez V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):030102. PubMed ID: 12366090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piecewise linear emulation of propagating fronts as a method for determining their speeds.
    Theodorakis S; Svoukis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):027201. PubMed ID: 14525152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of constant electric fields on the buoyant stability of reaction fronts.
    Zadrazil A; Kiss IZ; D'Hernoncourt J; Sevcíková H; Merkin JH; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026224. PubMed ID: 15783404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion.
    Müller J; Van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061111. PubMed ID: 12188707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuating pulled fronts: The origin and the effects of a finite particle cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036206. PubMed ID: 12366223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities.
    D'Hernoncourt J; Merkin JH; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035301. PubMed ID: 17930295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed selection mechanism for propagating fronts in reaction-diffusion systems with multiple fields.
    Theodorakis S; Leontidis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026122. PubMed ID: 11863602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.