These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11800722)

  • 1. From ballistic to Brownian motion through enhanced diffusion in vertex-splitting polygonal and disk-dispersing Sinai billiards.
    Kokshenev VB; Vicentini E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015201. PubMed ID: 11800722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics.
    Salari L; Rondoni L; Giberti C; Klages R
    Chaos; 2015 Jul; 25(7):073113. PubMed ID: 26232964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves.
    Ishio H; Saichev AI; Sadreev AF; Berggren KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polygonal billiards and transport: diffusion and heat conduction.
    Alonso D; Ruiz A; De Vega I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066131. PubMed ID: 12513371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow relaxation in weakly open rational polygons.
    Kokshenev VB; Vicentini E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016221. PubMed ID: 12935239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime.
    Goussev A; Dorfman JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016204. PubMed ID: 16907174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudointegrable Andreev billiard.
    Wiersig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036221. PubMed ID: 11909226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossover from regular to irregular behavior in current flow through open billiards.
    Berggren KF; Sadreev AF; Starikov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric correlations of the energy levels of ray-splitting billiards.
    Savytskyy N; Kohler A; Bauch S; Blümel R; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036211. PubMed ID: 11580426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superdiffusion in a honeycomb billiard.
    Schmiedeberg M; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031113. PubMed ID: 16605506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superdiffusive trajectories in Brownian motion.
    Duplat J; Kheifets S; Li T; Raizen MG; Villermaux E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020105. PubMed ID: 23496441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-rank perturbations and the spectral statistics of pseudointegrable billiards.
    Gorin T; Wiersig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065205. PubMed ID: 14754256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of Husimi zeros in polygonal billiards.
    Biswas D; Sinha S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):408-15. PubMed ID: 11969776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonergodicity of the motion in three-dimensional steep repelling dispersing potentials.
    Rapoport A; Rom-Kedar V
    Chaos; 2006 Dec; 16(4):043108. PubMed ID: 17199386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum algorithmic integrability: the metaphor of classical polygonal billiards.
    Mantica G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6434-43. PubMed ID: 11088321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards.
    Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of wave functions of pseudointegrable billiards.
    Bogomolny E; Schmit C
    Phys Rev Lett; 2004 Jun; 92(24):244102. PubMed ID: 15245084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffractive corrections in the trace formula for polygonal billiards.
    Bogomolny E; Pavloff N; Schmit C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3689-711. PubMed ID: 11088147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of wave functions and currents induced by spin-orbit interaction in chaotic billiards.
    Bulgakov EN; Sadreev AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056211. PubMed ID: 15600732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.