These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
557 related articles for article (PubMed ID: 11800727)
1. Double scaling and intermittency in shear dominated flows. Casciola CM; Benzi R; Gualtieri P; Jacob B; Piva R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015301. PubMed ID: 11800727 [TBL] [Abstract][Full Text] [Related]
2. Scaling properties in the production range of shear dominated flows. Casciola CM; Gualtieri P; Jacob B; Piva R Phys Rev Lett; 2005 Jul; 95(2):024503. PubMed ID: 16090687 [TBL] [Abstract][Full Text] [Related]
3. Fluctuations of a passive scalar in a turbulent mixing layer. Attili A; Bisetti F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033013. PubMed ID: 24125350 [TBL] [Abstract][Full Text] [Related]
4. Measurement of local dissipation scales in turbulent pipe flow. Bailey SC; Hultmark M; Schumacher J; Yakhot V; Smits AJ Phys Rev Lett; 2009 Jul; 103(1):014502. PubMed ID: 19659151 [TBL] [Abstract][Full Text] [Related]
5. Effect of large-scale intermittency and mean shear on scaling-range exponents in a turbulent jet. Mi J; Antonia RA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026302. PubMed ID: 11497694 [TBL] [Abstract][Full Text] [Related]
6. Intermittency in the isotropic component of helical and nonhelical turbulent flows. Martin LN; Mininni PD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016310. PubMed ID: 20365463 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic homogeneous turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors. Biferale L; Toschi F Phys Rev Lett; 2001 May; 86(21):4831-4. PubMed ID: 11384359 [TBL] [Abstract][Full Text] [Related]
8. Anomalous scaling and intermittency in three-dimensional synthetic turbulence. Rosales C; Meneveau C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016313. PubMed ID: 18764056 [TBL] [Abstract][Full Text] [Related]
9. Effects of forcing in three-dimensional turbulent flows. Biferale L; Lanotte AS; Toschi F Phys Rev Lett; 2004 Mar; 92(9):094503. PubMed ID: 15089473 [TBL] [Abstract][Full Text] [Related]
10. Local structure of turbulence in flows with large Reynolds numbers. Praskovsky AA Chaos; 1991 Aug; 1(2):237-241. PubMed ID: 12779920 [TBL] [Abstract][Full Text] [Related]
11. Model for intermittency of energy dissipation in turbulent flows. Lepreti F; Carbone V; Veltri P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026306. PubMed ID: 17025538 [TBL] [Abstract][Full Text] [Related]
12. Refined similarity hypotheses in shell models of homogeneous turbulence and turbulent convection. Ching ES; Guo H; Lo TS Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026303. PubMed ID: 18850932 [TBL] [Abstract][Full Text] [Related]
13. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Qiu X; Liu YL; Zhou Q Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598 [TBL] [Abstract][Full Text] [Related]
14. Large is different: Nonmonotonic behavior of elastic range scaling in polymeric turbulence at large Reynolds and Deborah numbers. Rosti ME; Perlekar P; Mitra D Sci Adv; 2023 Mar; 9(11):eadd3831. PubMed ID: 36921045 [TBL] [Abstract][Full Text] [Related]
15. Log-stable law of energy dissipation as a framework of turbulence intermittency. Mouri H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033017. PubMed ID: 25871212 [TBL] [Abstract][Full Text] [Related]
17. Small-scale universality in fluid turbulence. Schumacher J; Scheel JD; Krasnov D; Donzis DA; Yakhot V; Sreenivasan KR Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10961-5. PubMed ID: 25024175 [TBL] [Abstract][Full Text] [Related]
18. Puff turbulence in the limit of strong buoyancy. Mazzino A; Rosti ME Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210093. PubMed ID: 35094562 [TBL] [Abstract][Full Text] [Related]
19. Probing the energy cascade of convective turbulence. Kunnen RP; Clercx HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063018. PubMed ID: 25615198 [TBL] [Abstract][Full Text] [Related]
20. Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows. Yu H; Meneveau C Phys Rev Lett; 2010 Feb; 104(8):084502. PubMed ID: 20366935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]