These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11800826)
1. Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems. Dey B; Eleftheriou M; Flach S; Tsironis GP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):017601. PubMed ID: 11800826 [TBL] [Abstract][Full Text] [Related]
2. Compactlike breathers: bridging the continuous with the anticontinuous limit. Eleftheriou M; Dey B; Tsironis GP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7540-3. PubMed ID: 11102128 [TBL] [Abstract][Full Text] [Related]
3. Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms. Gorbach AV; Flach S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056607. PubMed ID: 16383771 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of a curved Fermi-Pasta-Ulam chain: effects of geometry, long-range interaction, and nonlinear dispersion. Sarkar R; Dey B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016605. PubMed ID: 17677583 [TBL] [Abstract][Full Text] [Related]
5. Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Sato M; Sievers AJ Nature; 2004 Nov; 432(7016):486-8. PubMed ID: 15565149 [TBL] [Abstract][Full Text] [Related]
7. One-dimensional "turbulence" in a discrete lattice. Daumont I; Peyrard M Chaos; 2003 Jun; 13(2):624-36. PubMed ID: 12777127 [TBL] [Abstract][Full Text] [Related]
8. Exact discrete compactlike traveling kinks and pulses in phi(4) nonlinear lattices. Comte JC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046619. PubMed ID: 12006059 [TBL] [Abstract][Full Text] [Related]
9. Discrete breathers in hexagonal dusty plasma lattices. Koukouloyannis V; Kourakis I Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026402. PubMed ID: 19792263 [TBL] [Abstract][Full Text] [Related]
10. Almost compact moving breathers with fine-tuned discrete time quantum walks. Vakulchyk I; Fistul MV; Zolotaryuk Y; Flach S Chaos; 2018 Dec; 28(12):123104. PubMed ID: 30599522 [TBL] [Abstract][Full Text] [Related]
11. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Kosevich YA; Manevitch LI; Savin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746 [TBL] [Abstract][Full Text] [Related]
12. Discrete breathers in a nonlinear polarizability model of ferroelectrics. Hoogeboom C; Kevrekidis PG; Saxena A; Bishop AR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066601. PubMed ID: 23368066 [TBL] [Abstract][Full Text] [Related]
13. Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit. Rosenau P; Schochet S Chaos; 2005 Mar; 15(1):15111. PubMed ID: 15836288 [TBL] [Abstract][Full Text] [Related]
14. Almost compact breathers in anharmonic lattices near the continuum limit. Rosenau P; Schochet S Phys Rev Lett; 2005 Feb; 94(4):045503. PubMed ID: 15783569 [TBL] [Abstract][Full Text] [Related]
15. Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile. Martínez PJ; Meister M; Floría LM; Falo F Chaos; 2003 Jun; 13(2):610-23. PubMed ID: 12777126 [TBL] [Abstract][Full Text] [Related]