These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11800845)
1. Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Schaub R; Thostrup P; Lopez N; Laegsgaard E; Stensgaard I; Nørskov JK; Besenbacher F Phys Rev Lett; 2001 Dec; 87(26):266104. PubMed ID: 11800845 [TBL] [Abstract][Full Text] [Related]
2. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
3. Role of steps in the dissociative adsorption of water on rutile TiO2(110). Kristoffersen HH; Hansen JO; Martinez U; Wei YY; Matthiesen J; Streber R; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S Phys Rev Lett; 2013 Apr; 110(14):146101. PubMed ID: 25167009 [TBL] [Abstract][Full Text] [Related]
4. Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethanol dissociation. Martinez U; Hansen JØ; Lira E; Kristoffersen HH; Huo P; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S Phys Rev Lett; 2012 Oct; 109(15):155501. PubMed ID: 23102329 [TBL] [Abstract][Full Text] [Related]
6. Oxygen vacancies as active sites for H2S dissociation on the rutile TiO2(110) surface: a first-principles study. Wang F; Wei S; Zhang Z; Patzke GR; Zhou Y Phys Chem Chem Phys; 2016 Mar; 18(9):6706-12. PubMed ID: 26875868 [TBL] [Abstract][Full Text] [Related]
7. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. Rasmussen MD; Molina LM; Hammer B J Chem Phys; 2004 Jan; 120(2):988-97. PubMed ID: 15267936 [TBL] [Abstract][Full Text] [Related]
8. Direct evidence for ethanol dissociation on rutile TiO2(110). Hansen JO; Huo P; Martinez U; Lira E; Wei YY; Streber R; Laegsgaard E; Hammer B; Wendt S; Besenbacher F Phys Rev Lett; 2011 Sep; 107(13):136102. PubMed ID: 22026875 [TBL] [Abstract][Full Text] [Related]
9. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. Chrétien S; Metiu H J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696 [TBL] [Abstract][Full Text] [Related]
10. First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. Kajita S; Minato T; Kato HS; Kawai M; Nakayama T J Chem Phys; 2007 Sep; 127(10):104709. PubMed ID: 17867771 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of water on reconstructed rutile TiO2(011)-(2 x 1): Ti=O double bonds and surface reactivity. Di Valentin C; Tilocca A; Selloni A; Beck TJ; Klust A; Batzill M; Losovyj Y; Diebold U J Am Chem Soc; 2005 Jul; 127(27):9895-903. PubMed ID: 15998096 [TBL] [Abstract][Full Text] [Related]
12. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy. Namai Y; Matsuoka O J Phys Chem B; 2005 Dec; 109(50):23948-54. PubMed ID: 16375383 [TBL] [Abstract][Full Text] [Related]
13. Molecular oxygen adsorption behaviors on the rutile TiO2(110)-1×1 surface: an in situ study with low-temperature scanning tunneling microscopy. Tan S; Ji Y; Zhao Y; Zhao A; Wang B; Yang J; Hou JG J Am Chem Soc; 2011 Feb; 133(6):2002-9. PubMed ID: 21247169 [TBL] [Abstract][Full Text] [Related]
14. Water-mediated proton hopping on an iron oxide surface. Merte LR; Peng G; Bechstein R; Rieboldt F; Farberow CA; Grabow LC; Kudernatsch W; Wendt S; Lægsgaard E; Mavrikakis M; Besenbacher F Science; 2012 May; 336(6083):889-93. PubMed ID: 22605771 [TBL] [Abstract][Full Text] [Related]
15. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Schaub R; Wahlström E; Rønnau A; Lagsgaard E; Stensgaard I; Besenbacher F Science; 2003 Jan; 299(5605):377-9. PubMed ID: 12481022 [TBL] [Abstract][Full Text] [Related]
16. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps. Zheng T; Wu C; Chen M; Zhang Y; Cummings PT J Chem Phys; 2016 Jul; 145(4):044702. PubMed ID: 27475381 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst. Wu S; Xiong J; Sun J; Hood ZD; Zeng W; Yang Z; Gu L; Zhang X; Yang SZ ACS Appl Mater Interfaces; 2017 May; 9(19):16620-16626. PubMed ID: 28463559 [TBL] [Abstract][Full Text] [Related]
18. Theoretical study of adsorption of O((3)P) and H(2)O on the rutile TiO(2)(110) surface. Qu ZW; Kroes GJ J Phys Chem B; 2006 Nov; 110(46):23306-14. PubMed ID: 17107180 [TBL] [Abstract][Full Text] [Related]
19. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Wendt S; Matthiesen J; Schaub R; Vestergaard EK; Laegsgaard E; Besenbacher F; Hammer B Phys Rev Lett; 2006 Feb; 96(6):066107. PubMed ID: 16606018 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study of water adsorption and dissociation on Ta3N5(100) surfaces. Wang J; Luo W; Feng J; Zhang L; Li Z; Zou Z Phys Chem Chem Phys; 2013 Oct; 15(38):16054-64. PubMed ID: 23965737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]