These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11800975)

  • 1. Quasiparticle electronic structure of copper in the GW approximation.
    Marini A; Onida G; Del Sole R
    Phys Rev Lett; 2002 Jan; 88(1):016403. PubMed ID: 11800975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasiparticle effects on tunneling currents: a study of C2H4 adsorbed on the Si(001)- (2 x 1) surface.
    Rignanese GM; Blase X; Louie SG
    Phys Rev Lett; 2001 Mar; 86(10):2110-3. PubMed ID: 11289867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-electron GW quasiparticle band structures of group 14 nitride compounds.
    Chu IH; Kozhevnikov A; Schulthess TC; Cheng HP
    J Chem Phys; 2014 Jul; 141(4):044709. PubMed ID: 25084939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark.
    Liao P; Carter EA
    Phys Chem Chem Phys; 2011 Sep; 13(33):15189-99. PubMed ID: 21761032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle band structure of vanadium dioxide.
    Sakuma R; Miyake T; Aryasetiawan F
    J Phys Condens Matter; 2009 Feb; 21(6):064226. PubMed ID: 21715928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial.
    Rinke P; Janotti A; Scheffler M; Van de Walle CG
    Phys Rev Lett; 2009 Jan; 102(2):026402. PubMed ID: 19257298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.
    Jang SW; Kotani T; Kino H; Kuroki K; Han MJ
    Sci Rep; 2015 Jul; 5():12050. PubMed ID: 26206417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides.
    Vidal J; Trani F; Bruneval F; Marques MA; Botti S
    Phys Rev Lett; 2010 Apr; 104(13):136401. PubMed ID: 20481897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renormalization of molecular electronic levels at metal-molecule interfaces.
    Neaton JB; Hybertsen MS; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216405. PubMed ID: 17155759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.
    Opalka D; Pham TA; Sprik M; Galli G
    J Phys Chem B; 2015 Jul; 119(30):9651-60. PubMed ID: 26132076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter-free quasiparticle calculations for YH3.
    van Gelderen P ; Bobbert PA; Kelly PJ; Brocks G
    Phys Rev Lett; 2000 Oct; 85(14):2989-92. PubMed ID: 11005985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiparticle Self-Consistent
    Friedrich C; Blügel S; Nabok D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies.
    Bruneval F
    J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model GW study of the late transition metal monoxides.
    Ye LH; Asahi R; Peng LM; Freeman AJ
    J Chem Phys; 2012 Oct; 137(15):154110. PubMed ID: 23083151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110).
    Hedström M; Schindlmayr A; Schwarz G; Scheffler M
    Phys Rev Lett; 2006 Dec; 97(22):226401. PubMed ID: 17155819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous quasiparticle lifetime in graphite: band structure effects.
    Spataru CD; Cazalilla MA; Rubio A; Benedict LX; Echenique PM; Louie SG
    Phys Rev Lett; 2001 Dec; 87(24):246405. PubMed ID: 11736524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The
    Golze D; Dvorak M; Rinke P
    Front Chem; 2019; 7():377. PubMed ID: 31355177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis-μ-oxo and μ-η2:η2-peroxo dicopper complexes studied within (time-dependent) density-functional and many-body perturbation theory.
    Rohrmüller M; Herres-Pawlis S; Witte M; Schmidt WG
    J Comput Chem; 2013 May; 34(12):1035-45. PubMed ID: 23299568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.