These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11801074)

  • 1. Reaction-limited island nucleation in molecular beam epitaxy of compound semiconductors.
    Kratzer P; Scheffler M
    Phys Rev Lett; 2002 Jan; 88(3):036102. PubMed ID: 11801074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kink-formation kinetics and submonolayer density of magic two-dimensional islands in molecular beam epitaxy.
    Filimonov S; Hervieu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051603. PubMed ID: 20364991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Island nucleation in thin-film epitaxy: A first-principles investigation.
    Fichthorn KA; Scheffler M
    Phys Rev Lett; 2000 Jun; 84(23):5371-4. PubMed ID: 10990946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of "Ghost" islands and surfactant effect of surface gallium atoms during GaN growth by molecular beam epitaxy.
    Zheng LX; Xie MH; Seutter SM; Cheung SH; Tong SY
    Phys Rev Lett; 2000 Sep; 85(11):2352-5. PubMed ID: 10978008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling in film growth by pulsed laser deposition and modulated beam deposition.
    Lee SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041605. PubMed ID: 21599173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glancing-angle ion enhanced surface diffusion on gaAs(001) during molecular beam epitaxy.
    DeLuca PM; Ruthe KC; Barnett SA
    Phys Rev Lett; 2001 Jan; 86(2):260-3. PubMed ID: 11177806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching.
    Heyn C; Feddersen S
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field model of island growth in epitaxy.
    Yu YM; Liu BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021601. PubMed ID: 14995452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorbate interactions on the GaN(0001) surface and their effect on diffusion barriers and growth morphology.
    Chugh M; Ranganathan M
    Phys Chem Chem Phys; 2017 Jan; 19(3):2111-2123. PubMed ID: 28045144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces.
    Xu D; Zapol P; Stephenson GB; Thompson C
    J Chem Phys; 2017 Apr; 146(14):144702. PubMed ID: 28411601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Masked Droplet Deposition for Site-Controlled Ga Droplets.
    Feddersen S; Zolatanosha V; Alshaikh A; Reuter D; Heyn C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Epitaxy of III-Nitrides: A Microscopic Model of Homoepitaxial Growth.
    Erwin SC; Lyons JL
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49245-49251. PubMed ID: 33064455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.
    Guo L; Radisic A; Searson PC
    J Phys Chem B; 2005 Dec; 109(50):24008-15. PubMed ID: 16375391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic flux dependence of island nucleation on InAs(001).
    Grosse F; Barvosa-Carter W; Zinck J; Wheeler M; Gyure MF
    Phys Rev Lett; 2002 Sep; 89(11):116102. PubMed ID: 12225156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots.
    Budagosky JA; García-Cristóbal A
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape modification of III-V nanowires: the role of nucleation on sidewalls.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Tchernycheva M; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031606. PubMed ID: 18517394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy.
    Balakirev SV; Solodovnik MS; Eremenko MM; Konoplev BG; Ageev OA
    Nanotechnology; 2019 Dec; 30(50):505601. PubMed ID: 31480037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001).
    Rusanen M; Koponen IT; Heinonen J; Ala-Nissila T
    Phys Rev Lett; 2001 Jun; 86(23):5317-20. PubMed ID: 11384487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.