BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11801254)

  • 41. Role of chitin binding domain of chitinase A of Streptomyces cyaneus SP-27 in protoplast formation from Schizophyllum commune.
    Yano S; Honda A; Rattanakit-Chandet N; Noda Y; Wakayama M; Plikomol A; Tachiki T
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):733-5. PubMed ID: 19270417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis.
    Wang FP; Li Q; Zhou Y; Li MG; Xiao X
    Proteins; 2003 Dec; 53(4):908-16. PubMed ID: 14635132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering.
    Kezuka Y; Kojima M; Mizuno R; Suzuki K; Watanabe T; Nonaka T
    Proteins; 2010 Aug; 78(10):2295-305. PubMed ID: 20544965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase.
    Paspaliari DK; Loose JS; Larsen MH; Vaaje-Kolstad G
    FEBS J; 2015 Mar; 282(5):921-36. PubMed ID: 25565565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fusion of cellulose binding domain to the catalytic domain improves the activity and conformational stability of chitinase in Bacilluslicheniformis DSM13.
    Neeraja C; Moerschbacher B; Podile AR
    Bioresour Technol; 2010 May; 101(10):3635-41. PubMed ID: 20097556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate positioning in chitinase A, a processive chito-biohydrolase from Serratia marcescens.
    Norberg AL; Dybvik AI; Zakariassen H; Mormann M; Peter-Katalinić J; Eijsink VG; Sørlie M
    FEBS Lett; 2011 Jul; 585(14):2339-44. PubMed ID: 21683074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.
    Nakagawa YS; Eijsink VG; Totani K; Vaaje-Kolstad G
    J Agric Food Chem; 2013 Nov; 61(46):11061-6. PubMed ID: 24168426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation.
    Zhou J; Chen L; Kang L; Liu Z; Bai Y; Yang Y; Yuan S
    J Agric Food Chem; 2018 Dec; 66(48):12773-12782. PubMed ID: 30404442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Characterization of an exo-chitinase from a Citrobacter strain isolated from the intestine content of large yellow croakers].
    Xu J; Yang Y; Liu Y; Ran C; Li J; He S; Xu L; Ai X; Zhou Z
    Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1089-1104. PubMed ID: 29733170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb).
    Han B; Zhou K; Li Z; Sun B; Ni Q; Meng X; Pan G; Li C; Long M; Li T; Zhou C; Li W; Zhou Z
    J Eukaryot Microbiol; 2016; 63(1):37-45. PubMed ID: 26108336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases.
    Manjeet K; Purushotham P; Neeraja C; Podile AR
    Microbiol Res; 2013 Aug; 168(7):461-8. PubMed ID: 23480960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical characteristics of chitinase enzyme from Bacillus sp. of Kamojang Crater, Indonesia.
    Natsir H; Chandra D; Rukayadi Y; Suhartono MT; Hwang JK; Pyun YR
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):279-82. PubMed ID: 12186745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitinase-catalyzed synthesis of an alternatingly N-sulfonated chitin derivative.
    Makino A; Nagashima H; Ohmae M; Kobayashi S
    Biomacromolecules; 2007 Jan; 8(1):188-95. PubMed ID: 17206806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes.
    Sasaki C; Yokoyama A; Itoh Y; Hashimoto M; Watanabe T; Fukamizo T
    J Biochem; 2002 Apr; 131(4):557-64. PubMed ID: 11926993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of Tyr-435 of Vibrio harveyi chitinase A in chitin utilization.
    Sritho N; Suginta W
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1192-202. PubMed ID: 22194054
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of fluorinated chitin derivatives via enzymatic polymerization.
    Makino A; Ohmae M; Kobayashi S
    Macromol Biosci; 2006 Oct; 6(10):862-72. PubMed ID: 17039578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activities.
    Huang CJ; Guo SH; Chung SC; Lin YJ; Chen CY
    J Microbiol Biotechnol; 2009 Oct; 19(10):1169-75. PubMed ID: 19884776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides.
    van Munster JM; Sanders P; ten Kate GA; Dijkhuizen L; van der Maarel MJ
    Carbohydr Res; 2015 Apr; 407():73-8. PubMed ID: 25723623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity.
    Kudan S; Kuttiyawong K; Pichyangkura R
    BMB Rep; 2011 Jun; 44(6):375-80. PubMed ID: 21699749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.