These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 11801292)

  • 1. Parallel circuits mediating distinct emotional coping reactions to different types of stress.
    Keay KA; Bandler R
    Neurosci Biobehav Rev; 2001 Dec; 25(7-8):669-78. PubMed ID: 11801292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.
    Bandler R; Keay KA; Floyd N; Price J
    Brain Res Bull; 2000 Sep; 53(1):95-104. PubMed ID: 11033213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats.
    Keay KA; Clement CI; Depaulis A; Bandler R
    Neurosci Lett; 2001 Nov; 313(1-2):17-20. PubMed ID: 11684329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct central representations of inescapable and escapable pain: observations and speculation.
    Keay KA; Bandler R
    Exp Physiol; 2002 Mar; 87(2):275-9. PubMed ID: 11856974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inescapable and escapable pain is represented in distinct hypothalamic-midbrain circuits: specific roles for Adelta- and C-nociceptors.
    Lumb BM
    Exp Physiol; 2002 Mar; 87(2):281-6. PubMed ID: 11856975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic neural activity during stress signals resilient coping.
    Sinha R; Lacadie CM; Constable RT; Seo D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8837-42. PubMed ID: 27432990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?
    Bandler R; Shipley MT
    Trends Neurosci; 1994 Sep; 17(9):379-89. PubMed ID: 7817403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noxious activation of spinal or vagal afferents evokes distinct patterns of fos-like immunoreactivity in the ventrolateral periaqueductal gray of unanaesthetised rats.
    Keay KA; Clement CI; Matar WM; Heslop DJ; Henderson LA; Bandler R
    Brain Res; 2002 Sep; 948(1-2):122-30. PubMed ID: 12383963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response.
    Johnson SB; Lingg RT; Skog TD; Hinz DC; Romig-Martin SA; Viau V; Narayanan NS; Radley JJ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2210783119. PubMed ID: 36306326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferents to the central nucleus of the amygdala and functional subdivisions of the periaqueductal gray: neuroanatomical substrates for affective behavior.
    Paredes J; Winters RW; Schneiderman N; McCabe PM
    Brain Res; 2000 Dec; 887(1):157-73. PubMed ID: 11134600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons.
    Farkas E; Jansen AS; Loewy AD
    Brain Res; 1998 May; 792(2):179-92. PubMed ID: 9593884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat.
    Zhang SP; Bandler R; Carrive P
    Brain Res; 1990 Jun; 520(1-2):73-82. PubMed ID: 2207648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local connections between the columns of the periaqueductal gray matter: a case for intrinsic neuromodulation.
    Jansen AS; Farkas E; Mac Sams J; Loewy AD
    Brain Res; 1998 Feb; 784(1-2):329-36. PubMed ID: 9518675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
    An X; Bandler R; Ongür D; Price JL
    J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The periaqueductal gray and defensive behavior: functional representation and neuronal organization.
    Carrive P
    Behav Brain Res; 1993 Dec; 58(1-2):27-47. PubMed ID: 8136048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Neural Representations and Cognitive Behaviors Attributable to Naturally Developed Active Avoidance or Reactive Escape Strategies in the Male Rat.
    Jing L; Ma C; Xu L; Richter-Levin G
    Int J Neuropsychopharmacol; 2023 Nov; 26(11):761-772. PubMed ID: 37725443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fos expression induced by changes in arterial pressure is localized in distinct, longitudinally organized columns of neurons in the rat midbrain periaqueductal gray.
    Murphy AZ; Ennis M; Rizvi TA; Behbehani MM; Shipley MT
    J Comp Neurol; 1995 Sep; 360(2):286-300. PubMed ID: 8522648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of neuronal connections between specific parts of the periaqueductal gray (PAG) and the rest of the brain in sheep: placing the sheep PAG in the circuit of emotion.
    Menant O; Prima MC; Morisse M; Cornilleau F; Moussu C; Gautier A; Blanchon H; Meurisse M; Delagrange P; Tillet Y; Chaillou E
    Brain Struct Funct; 2018 Sep; 223(7):3297-3316. PubMed ID: 29869133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heritable variation for aggression as a reflection of individual coping strategies.
    Benus RF; Bohus B; Koolhaas JM; van Oortmerssen GA
    Experientia; 1991 Oct; 47(10):1008-19. PubMed ID: 1936199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.