These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11801320)

  • 1. Sleep on it: cortical reorganization after-the-fact.
    Hoffman KL; McNaughton BL
    Trends Neurosci; 2002 Jan; 25(1):1-2. PubMed ID: 11801320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical plasticity: learning while you sleep?
    Sengpiel F
    Curr Biol; 2001 Aug; 11(16):R647-50. PubMed ID: 11525757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of sleep-dependent consolidation of cortical plasticity.
    Aton SJ; Seibt J; Dumoulin M; Jha SK; Steinmetz N; Coleman T; Naidoo N; Frank MG
    Neuron; 2009 Feb; 61(3):454-66. PubMed ID: 19217381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo.
    Dumoulin MC; Aton SJ; Watson AJ; Renouard L; Coleman T; Frank MG
    Cereb Cortex; 2015 Feb; 25(2):507-15. PubMed ID: 24047601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-dependent plasticity requires cortical activity.
    Jha SK; Jones BE; Coleman T; Steinmetz N; Law CT; Griffin G; Hawk J; Dabbish N; Kalatsky VA; Frank MG
    J Neurosci; 2005 Oct; 25(40):9266-74. PubMed ID: 16207886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons.
    Aton SJ; Broussard C; Dumoulin M; Seibt J; Watson A; Coleman T; Frank MG
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3101-6. PubMed ID: 23300282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory loss and cortical reorganization in mature primates.
    Kaas JH
    Prog Brain Res; 2002; 138():167-76. PubMed ID: 12432769
    [No Abstract]   [Full Text] [Related]  

  • 10. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental plasticity and memory.
    Rauschecker JP
    Behav Brain Res; 1995 Jan; 66(1-2):7-12. PubMed ID: 7755902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human brain plasticity: evidence from sensory deprivation and altered language experience.
    Neville H; Bavelier D
    Prog Brain Res; 2002; 138():177-88. PubMed ID: 12432770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.
    Hosang L; Yusifov R; Löwel S
    eNeuro; 2018; 5(1):. PubMed ID: 29379877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisensory Plasticity in Superior Colliculus Neurons is Mediated by Association Cortex.
    Yu L; Xu J; Rowland BA; Stein BE
    Cereb Cortex; 2016 Mar; 26(3):1130-7. PubMed ID: 25552270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex.
    Frank MG; Jha SK; Coleman T
    Neuroreport; 2006 Sep; 17(13):1459-63. PubMed ID: 16932158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible role of S-100 in glia-neuronal signalling involved in activity-dependent plasticity in the developing mammalian cortex.
    Müller CM; Akhavan AC; Bette M
    J Chem Neuroanat; 1993; 6(4):215-27. PubMed ID: 8397921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery from effects of brief monocular deprivation in the kitten.
    Malach R; Ebert R; Van Sluyters RC
    J Neurophysiol; 1984 Mar; 51(3):538-51. PubMed ID: 6699677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged sensitivity to monocular deprivation in dark-reared cats: effects of age and visual exposure.
    Cynader M
    Brain Res; 1983 Jun; 284(2-3):155-64. PubMed ID: 6871721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.