These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11801361)

  • 21. Increases in neuronal bursting recorded from the chick lobus parolfactorius after training are both time-dependent and memory-specific.
    Gigg J; Patterson TA; Rose SP
    Eur J Neurosci; 1994 Mar; 6(3):313-9. PubMed ID: 8019670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Training-dependent biphasic effects of corticosterone in memory formation for a passive avoidance task in chicks.
    Sandi C; Rose SP
    Psychopharmacology (Berl); 1997 Sep; 133(2):152-60. PubMed ID: 9342781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice.
    Reddy DS; Kulkarni SK
    Brain Res; 1998 Apr; 791(1-2):108-16. PubMed ID: 9593848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lesions of the intermediate medial hyperstriatum ventrale impair sickness-conditioned learning in day-old chicks.
    Barber TA; Howorth PD; Klunk AM; Cho CC
    Neurobiol Learn Mem; 1999 Sep; 72(2):128-41. PubMed ID: 10438652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 7-Chlorokynurenate, an antagonist of the glycine binding site on the NMDA receptor, inhibits memory formation in day-old chicks (Gallus domesticus).
    Steele RJ; Stewart MG
    Behav Neural Biol; 1993 Sep; 60(2):89-92. PubMed ID: 8117242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Memory-enhancing effects of DHEAS in aged mice on a win-shift water escape task.
    Markowski M; Ungeheuer M; Bitran D; Locurto C
    Physiol Behav; 2001 Mar; 72(4):521-5. PubMed ID: 11282135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation-stress-induced facilitation of passive avoidance memory in the day-old chick.
    Johnston AN; Rose SP
    Behav Neurosci; 1998 Aug; 112(4):929-36. PubMed ID: 9733199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. D-cycloserine causes transient enhancement of memory for a weak aversive stimulus in day-old chicks (Gallus domesticus).
    Steele RJ; Dermon CR; Stewart MG
    Neurobiol Learn Mem; 1996 Sep; 66(2):236-40. PubMed ID: 8946416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein kinase inhibitors disrupt memory formation in two chick brain regions.
    Serrano PA; Rodriguez WA; Bennett EL; Rosenzweig MR
    Pharmacol Biochem Behav; 1995 Nov; 52(3):547-54. PubMed ID: 8545472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of archistriatal lesions on one-trial passive avoidance learning in the chick.
    Lowndes M; Davies DC
    Eur J Neurosci; 1994 Apr; 6(4):525-30. PubMed ID: 8025708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence of a time-dependent long-term stage of memory for a spatial learning task in the chick (Callus gallus).
    Jakupi JR; Rickard NS
    Behav Neurosci; 2004 Jun; 118(3):569-74. PubMed ID: 15174934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibiting synthesis of the putative retrograde messenger nitric oxide results in amnesia in a passive avoidance task in the chick.
    Hölscher C; Rose SP
    Brain Res; 1993 Aug; 619(1-2):189-94. PubMed ID: 8374777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynorphin(1-13) impairs memory formation for aversive and appetitive learning in chicks.
    Colombo PJ; Thompson KR; Martinez JL; Bennett EL; Rosenzweig MR
    Peptides; 1993; 14(6):1165-70. PubMed ID: 7907788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydroepiandrosterone and its sulfate enhance memory retention in mice.
    Flood JF; Smith GE; Roberts E
    Brain Res; 1988 May; 447(2):269-78. PubMed ID: 2968827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological changes associated with stages of memory formation in the chick following passive avoidance training.
    Stewart MG; Rusakov DA
    Behav Brain Res; 1995 Jan; 66(1-2):21-8. PubMed ID: 7755892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training induced dendritic spine density changes are specifically related to memory formation processes in the chick, Gallus domesticus.
    Patel SN; Rose SP; Stewart MG
    Brain Res; 1988 Oct; 463(1):168-73. PubMed ID: 3196906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive avoidance training results in lasting changes in deoxyglucose metabolism in left hemisphere regions of chick brain.
    Rose SP; Csillag A
    Behav Neural Biol; 1985 Sep; 44(2):315-24. PubMed ID: 4062782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased immunogold labelling of neural cell adhesion molecule isoforms in synaptic active zones of the chick striatum 5-6 hours after one-trial passive avoidance training.
    Skibo GG; Davies HA; Rusakov DA; Stewart MG; Schachner M
    Neuroscience; 1998 Jan; 82(1):1-5. PubMed ID: 9483498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Passive avoidance training enhances cell proliferation in 1-day-old chicks.
    Dermon CR; Zikopoulos B; Panagis L; Harrison E; Lancashire CL; Mileusnic R; Stewart MG
    Eur J Neurosci; 2002 Oct; 16(7):1267-74. PubMed ID: 12405987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive avoidance training and recall are associated with increased glutamate levels in the intermediate medial hyperstriatum ventrale of the day-old chick.
    Daisley JN; Gruss M; Rose SP; Braun K
    Neural Plast; 1998; 6(3):53-61. PubMed ID: 9920682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.