These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11801367)

  • 1. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ.
    Müller M; Brockhaus J; Ballanyi K
    Neuroscience; 2002; 109(2):313-28. PubMed ID: 11801367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ.
    Kulik A; Brockhaus J; Pedarzani P; Ballanyi K
    Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Ca2+ during metabolic activation of KATP channels in spontaneously active dorsal vagal neurons in medullary slices.
    Ballanyi K; Kulik A
    Eur J Neurosci; 1998 Aug; 10(8):2574-85. PubMed ID: 9767388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH and KATP channel activity in dorsal vagal neurons of juvenile rats in situ during metabolic disturbances.
    Raupach T; Ballanyi K
    Brain Res; 2004 Aug; 1017(1-2):137-45. PubMed ID: 15261109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous activation of KATP current in rat dorsal vagal neurones.
    Trapp S; Ballanyi K; Richter DW
    Neuroreport; 1994 Jun; 5(10):1285-8. PubMed ID: 7919183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL; Langohr K; Haller M; Richter DW
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro.
    Trapp S; Ballanyi K
    J Physiol; 1995 Aug; 487(1):37-50. PubMed ID: 7473257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro.
    Fujimura N; Tanaka E; Yamamoto S; Shigemori M; Higashi H
    J Neurophysiol; 1997 Jan; 77(1):378-85. PubMed ID: 9120578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion.
    Ballanyi K; Doutheil J; Brockhaus J
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):769-84. PubMed ID: 8887782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ.
    Karschin A; Brockhaus J; Ballanyi K
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):339-46. PubMed ID: 9575284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIP2 and ATP cooperatively prevent cytosolic Ca2+-induced modification of ATP-sensitive K+ channels in rat pancreatic beta-cells.
    Koriyama N; Kakei M; Nakazaki M; Yaekura K; Ichinari K; Gong Q; Morimitsu S; Yada T; Tei C
    Diabetes; 2000 Nov; 49(11):1830-9. PubMed ID: 11078449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-sensitive potassium channels counteract anoxia in neurones of the substantia nigra.
    Murphy KP; Greenfield SA
    Exp Brain Res; 1991; 84(2):355-8. PubMed ID: 2065741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro.
    Kulik A; Trapp S; Ballanyi K
    J Neurophysiol; 2000 May; 83(5):2905-15. PubMed ID: 10805687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse beta-cells.
    Schwanstecher C; Dickel C; Panten U
    Br J Pharmacol; 1994 Jan; 111(1):302-10. PubMed ID: 8012711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    J Membr Biol; 2000 Dec; 178(3):205-14. PubMed ID: 11140276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective role of neuronal KATP channels in brain hypoxia.
    Ballanyi K
    J Exp Biol; 2004 Aug; 207(Pt 18):3201-12. PubMed ID: 15299041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta.
    Wu J; Hu J; Chen YP; Takeo T; Suga S; Dechon J; Liu Q; Yang KC; St John PA; Hu G; Wang H; Wakui M
    J Pharmacol Exp Ther; 2006 Oct; 319(1):155-64. PubMed ID: 16837559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia.
    Kron M; Müller M
    Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.