BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 11801413)

  • 1. Biomechanics and physiology in active manual wheelchair propulsion.
    van der Woude LH; Veeger HE; Dallmeijer AJ; Janssen TW; Rozendaal LA
    Med Eng Phys; 2001 Dec; 23(10):713-33. PubMed ID: 11801413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.
    Bertolaccini GDS; Carvalho Filho IFP; Christofoletti G; Paschoarelli LC; Medola FO
    Int J Occup Saf Ergon; 2018 Jun; 24(2):311-315. PubMed ID: 28278008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand-rim biomechanics during geared manual wheelchair propulsion over different ground conditions in individuals with spinal cord injury.
    Jahanian O; Gaglio A; Cho CC; Muqeet V; Smith R; Morrow MMB; Hsiao-Wecksler ET; Slavens BA
    J Biomech; 2022 Sep; 142():111235. PubMed ID: 35947887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheelchair propulsion biomechanics: implications for wheelchair sports.
    Vanlandewijck Y; Theisen D; Daly D
    Sports Med; 2001; 31(5):339-67. PubMed ID: 11347685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET
    Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia.
    Algood SD; Cooper RA; Fitzgerald SG; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2004 Nov; 85(11):1865-71. PubMed ID: 15520983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Sports Med; 2013 Jan; 43(1):23-38. PubMed ID: 23315754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA; Tucker SM; Klaesner JW; Engsberg JR
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.