These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 11802778)
1. A distinct bipartite motif is required for the localization of inhibitory kappaB-like (IkappaBL) protein to nuclear speckles. Semple JI; Brown SE; Sanderson CM; Campbell RD Biochem J; 2002 Feb; 361(Pt 3):489-96. PubMed ID: 11802778 [TBL] [Abstract][Full Text] [Related]
2. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Dye BT; Patton JG Exp Cell Res; 2001 Feb; 263(1):131-44. PubMed ID: 11161712 [TBL] [Abstract][Full Text] [Related]
3. IκBL, a novel member of the nuclear IκB family, inhibits inflammatory cytokine expression. Chiba T; Miyashita K; Sugoh T; Warita T; Inoko H; Kimura M; Sato T FEBS Lett; 2011 Nov; 585(22):3577-81. PubMed ID: 22024480 [TBL] [Abstract][Full Text] [Related]
4. Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Sachdev S; Hoffmann A; Hannink M Mol Cell Biol; 1998 May; 18(5):2524-34. PubMed ID: 9566872 [TBL] [Abstract][Full Text] [Related]
5. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. Motoyama M; Yamazaki S; Eto-Kimura A; Takeshige K; Muta T J Biol Chem; 2005 Mar; 280(9):7444-51. PubMed ID: 15618216 [TBL] [Abstract][Full Text] [Related]
6. A serine/threonine-rich motif is one of three nuclear localization signals that determine unidirectional transport of the mineralocorticoid receptor to the nucleus. Walther RF; Atlas E; Carrigan A; Rouleau Y; Edgecombe A; Visentin L; Lamprecht C; Addicks GC; Haché RJ; Lefebvre YA J Biol Chem; 2005 Apr; 280(17):17549-61. PubMed ID: 15737989 [TBL] [Abstract][Full Text] [Related]
7. Transcription factor BACH1 is recruited to the nucleus by its novel alternative spliced isoform. Kanezaki R; Toki T; Yokoyama M; Yomogida K; Sugiyama K; Yamamoto M; Igarashi K; Ito E J Biol Chem; 2001 Mar; 276(10):7278-84. PubMed ID: 11069897 [TBL] [Abstract][Full Text] [Related]
8. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. Kishima Y; Yamamoto H; Izumoto Y; Yoshida K; Enomoto H; Yamamoto M; Kuroda T; Ito H; Yoshizaki K; Nakamura H J Biol Chem; 2002 Mar; 277(12):10315-22. PubMed ID: 11751870 [TBL] [Abstract][Full Text] [Related]
10. Cytoplasmic, nuclear, and golgi localization of RGS proteins. Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs. Chatterjee TK; Fisher RA J Biol Chem; 2000 Aug; 275(31):24013-21. PubMed ID: 10791963 [TBL] [Abstract][Full Text] [Related]
11. Nuclear import and retention domains in the amino terminus of RECQL4. Burks LM; Yin J; Plon SE Gene; 2007 Apr; 391(1-2):26-38. PubMed ID: 17250975 [TBL] [Abstract][Full Text] [Related]
12. Nuclear-localization-signal-dependent and nuclear-export-signal-dependent mechanisms determine the localization of 5-lipoxygenase. Hanaka H; Shimizu T; Izumi T Biochem J; 2002 Feb; 361(Pt 3):505-14. PubMed ID: 11802780 [TBL] [Abstract][Full Text] [Related]
13. Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein gamma-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. Chatterjee TK; Liu Z; Fisher RA J Biol Chem; 2003 Aug; 278(32):30261-71. PubMed ID: 12761221 [TBL] [Abstract][Full Text] [Related]
14. Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. Nie Y; Zhao Q; Su Y; Yang JH J Biol Chem; 2004 Mar; 279(13):13249-55. PubMed ID: 14711814 [TBL] [Abstract][Full Text] [Related]
15. Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb. Barboric M; Kohoutek J; Price JP; Blazek D; Price DH; Peterlin BM EMBO J; 2005 Dec; 24(24):4291-303. PubMed ID: 16362050 [TBL] [Abstract][Full Text] [Related]
16. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. Santama N; Ogg SC; Malekkou A; Zographos SE; Weis K; Lamond AI J Biol Chem; 2005 Oct; 280(43):36429-41. PubMed ID: 16079131 [TBL] [Abstract][Full Text] [Related]
17. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Hedley ML; Amrein H; Maniatis T Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11524-8. PubMed ID: 8524796 [TBL] [Abstract][Full Text] [Related]
18. Novel splicing variant of mouse Orc1 is deficient in nuclear translocation and resistant for proteasome-mediated degradation. Miyake Y; Mizuno T; Yanagi K; Hanaoka F J Biol Chem; 2005 Apr; 280(13):12643-52. PubMed ID: 15634681 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22. Zheng C; Brownlie R; Babiuk LA; van Drunen Littel-van den Hurk S J Virol; 2005 Sep; 79(18):11864-72. PubMed ID: 16140763 [TBL] [Abstract][Full Text] [Related]
20. Nuclear localization and shuttling of herpes simplex virus tegument protein VP13/14. Donnelly M; Elliott G J Virol; 2001 Mar; 75(6):2566-74. PubMed ID: 11222679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]