BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 11803023)

  • 1. Succinate dehydrogenase and fumarate reductase from Escherichia coli.
    Cecchini G; Schröder I; Gunsalus RP; Maklashina E
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):140-57. PubMed ID: 11803023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
    Lancaster CR; Kröger A
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):422-31. PubMed ID: 11004459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain.
    Maklashina E; Iverson TM; Sher Y; Kotlyar V; Andréll J; Mirza O; Hudson JM; Armstrong FA; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2006 Apr; 281(16):11357-65. PubMed ID: 16484232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Escherichia coli mutant quinol:fumarate reductase contains an EPR-detectable semiquinone stabilized at the proximal quinone-binding site.
    Hägerhäll C; Magnitsky S; Sled VD; Schröder I; Gunsalus RP; Cecchini G; Ohnishi T
    J Biol Chem; 1999 Sep; 274(37):26157-64. PubMed ID: 10473567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli.
    Nakamura K; Yamaki M; Sarada M; Nakayama S; Vibat CR; Gennis RB; Nakayashiki T; Inokuchi H; Kojima S; Kita K
    J Biol Chem; 1996 Jan; 271(1):521-7. PubMed ID: 8550613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, crystallisation and preliminary crystallographic studies of succinate:ubiquinone oxidoreductase from Escherichia coli.
    Törnroth S; Yankovskaya V; Cecchini G; Iwata S
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):171-6. PubMed ID: 11803025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases.
    Cecchini G; Maklashina E; Yankovskaya V; Iverson TM; Iwata S
    FEBS Lett; 2003 Jun; 545(1):31-8. PubMed ID: 12788489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abortive assembly of succinate-ubiquinone reductase (complex II) in a ferrochelatase-deficient mutant of Escherichia coli.
    Nihei C; Nakayashiki T; Nakamura K; Inokuchi H; Gennis RB; Kojima S; Kita K
    Mol Genet Genomics; 2001 May; 265(3):394-404. PubMed ID: 11405622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of histidine residues responsible for heme axial ligation in cytochrome b556 of complex II (succinate:ubiquinone oxidoreductase) in Escherichia coli.
    Vibat CR; Cecchini G; Nakamura K; Kita K; Gennis RB
    Biochemistry; 1998 Mar; 37(12):4148-59. PubMed ID: 9521736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in understanding structure-function relationships in respiratory chain complex II.
    Ackrell BA
    FEBS Lett; 2000 Jan; 466(1):1-5. PubMed ID: 10648801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding.
    Yang X; Yu L; He D; Yu CA
    J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is a Q-cycle-like mechanism operative in dihaemic succinate:quinone and quinol:fumarate oxidoreductases?
    Pereira MM; Teixeira M
    FEBS Lett; 2003 May; 543(1-3):1-4. PubMed ID: 12753894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth.
    Maklashina E; Berthold DA; Cecchini G
    J Bacteriol; 1998 Nov; 180(22):5989-96. PubMed ID: 9811659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli.
    Maklashina E; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2001 Jun; 276(22):18968-76. PubMed ID: 11259408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distal heme center in Bacillus subtilis succinate:quinone reductase is crucial for electron transfer to menaquinone.
    Matsson M; Tolstoy D; Aasa R; Hederstedt L
    Biochemistry; 2000 Jul; 39(29):8617-24. PubMed ID: 10913269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Escherichia coli fumarate reductase respiratory complex.
    Iverson TM; Luna-Chavez C; Cecchini G; Rees DC
    Science; 1999 Jun; 284(5422):1961-6. PubMed ID: 10373108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase.
    Oyedotun KS; Lemire BD
    J Biol Chem; 2001 May; 276(20):16936-43. PubMed ID: 11279023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase.
    Lemire BD; Oyedotun KS
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):102-16. PubMed ID: 11803020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.