BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11803573)

  • 1. alpha 1 Connexin (connexin43) gap junctions and activities of cAMP-dependent protein kinase and protein kinase C in developing mouse heart.
    Duncan JC; Fletcher WH
    Dev Dyn; 2002 Jan; 223(1):96-107. PubMed ID: 11803573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells.
    Lo HW; Antoun GR; Ali-Osman F
    Cancer Res; 2004 Dec; 64(24):9131-8. PubMed ID: 15604283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites.
    Srisakuldee W; Nickel BE; Fandrich RR; Jiang ZS; Kardami E
    Cell Commun Adhes; 2006; 13(1-2):13-9. PubMed ID: 16613776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions.
    Sáez JC; Nairn AC; Czernik AJ; Fishman GI; Spray DC; Hertzberg EL
    J Mol Cell Cardiol; 1997 Aug; 29(8):2131-45. PubMed ID: 9281445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes.
    Huang YS; Tseng YZ; Wu JC; Wang SM
    J Mol Cell Cardiol; 2004 Sep; 37(3):755-66. PubMed ID: 15350848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional effects of protein kinase C-mediated myofilament phosphorylation in human myocardium.
    van der Velden J; Narolska NA; Lamberts RR; Boontje NM; Borbély A; Zaremba R; Bronzwaer JG; Papp Z; Jaquet K; Paulus WJ; Stienen GJ
    Cardiovasc Res; 2006 Mar; 69(4):876-87. PubMed ID: 16376870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of connexin phosphorylation and cell-cell coupling in trabecular meshwork cells.
    Kimura S; Suzuki K; Sagara T; Nishida T; Yamamoto T; Kitazawa Y
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2222-8. PubMed ID: 10892866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of gap junction intercellular communication in primary canine lens epithelial cells: role of protein kinase C.
    Long AC; Colitz CM; Bomser JA
    Curr Eye Res; 2007 Mar; 32(3):223-31. PubMed ID: 17453942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C-gamma activation in the early streptozotocin diabetic rat lens.
    Lin D; Harris R; Stutzman R; Zampighi GA; Davidson H; Takemoto DJ
    Curr Eye Res; 2007 Jun; 32(6):523-32. PubMed ID: 17612968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication.
    Sirnes S; Kjenseth A; Leithe E; Rivedal E
    Biochem Biophys Res Commun; 2009 Apr; 382(1):41-5. PubMed ID: 19258009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site.
    Mitropoulou G; Bruzzone R
    J Neurosci Res; 2003 Apr; 72(2):147-57. PubMed ID: 12671989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning.
    Jain SK; Schuessler RB; Saffitz JE
    Circ Res; 2003 May; 92(10):1138-44. PubMed ID: 12730093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in protein kinase A and protein kinase C levels in heart failure due to genetic cardiomyopathy.
    Wang J; Liu X; Arneja AS; Dhalla NS
    Can J Cardiol; 1999 Jun; 15(6):683-90. PubMed ID: 10375719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C-alpha and -epsilon modulate connexin-43 phosphorylation in human heart.
    Bowling N; Huang X; Sandusky GE; Fouts RL; Mintze K; Esterman M; Allen PD; Maddi R; McCall E; Vlahos CJ
    J Mol Cell Cardiol; 2001 Apr; 33(4):789-98. PubMed ID: 11273731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipopolysaccharide plus hypoxia and reoxygenation synergistically reduce electrical coupling between microvascular endothelial cells by dephosphorylating connexin40.
    Bolon ML; Peng T; Kidder GM; Tyml K
    J Cell Physiol; 2008 Nov; 217(2):350-9. PubMed ID: 18521823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of gap junction formation to phosphorylation of connexin43 in mouse preimplantation embryos.
    Ogawa H; Oyamada M; Mori T; Mori M; Shimizu H
    Mol Reprod Dev; 2000 Apr; 55(4):393-8. PubMed ID: 10694746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentation of the type I regulatory subunit of cAMP-dependent protein kinase in cardiac ventricular muscle.
    Reinitz CA; Bianco RA; Shabb JB
    Arch Biochem Biophys; 1997 Dec; 348(2):391-402. PubMed ID: 9434753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of atrial contraction by PKA and PKC during the compensated phase of eccentric cardiac hypertrophy.
    Haddad GE; Coleman BR; Zhao A; Blackwell KN
    Basic Res Cardiol; 2004 Sep; 99(5):317-27. PubMed ID: 15309409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide reduces electrical coupling in microvascular endothelial cells by targeting connexin40 in a tyrosine-, ERK1/2-, PKA-, and PKC-dependent manner.
    Bolon ML; Kidder GM; Simon AM; Tyml K
    J Cell Physiol; 2007 Apr; 211(1):159-66. PubMed ID: 17149706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA.
    Chappe V; Hinkson DA; Zhu T; Chang XB; Riordan JR; Hanrahan JW
    J Physiol; 2003 Apr; 548(Pt 1):39-52. PubMed ID: 12588899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.