These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11803960)

  • 1. Ontogeny of plants under various gravity condition.
    Laurinavicius R; Svegzdiene D; Rakleviciene D; Kenstaviciene P
    Adv Space Res; 2001; 28(4):601-6. PubMed ID: 11803960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The state of gravity sensors and peculiarities of plant growth during different gravitational loads.
    Merkys AJ; Laurinavichius RS; Rupainene OJ; Savichene EK; Jaroshius AV; Shvegzhdene DV; Bendoraityte DP
    Adv Space Res; 1983; 3(9):211-9. PubMed ID: 11542450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro plant cell growth in microgravity and on clinostat.
    Laurinavicius R; Kenstaviciene P; Rupainiene O; Necitailo G
    Adv Space Res; 1994; 14(8):87-96. PubMed ID: 11537963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant growth, development and embryogenesis during Salyut-7 flight.
    Merkys AJ; Laurinavicius RS; Svegzdiene DV
    Adv Space Res; 1984; 4(10):55-63. PubMed ID: 11539644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force sensitivity of plant gravisensing.
    Laurinavicius R; Svegzdiene D; Gaina V
    Adv Space Res; 2001; 27(5):899-906. PubMed ID: 11594374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and growth of callus tissue of Arabidopsis under changed gravity.
    Merkys AJ; Laurinavicius RS; Kenstaviciene PF; Necitailo GS
    Adv Space Res; 1989; 9(11):37-40. PubMed ID: 11537345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of seedling shoots under space flight conditions.
    Merkys AJ; Mashinsky AL; Laurinavichius RS; Nechitailo GS; Yaroshius AV; Izupak EA
    Life Sci Space Res; 1975; 13():53-7. PubMed ID: 11913431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat.
    Smith JD; Staehelin LA; Todd P
    J Plant Physiol; 1999 Oct; 155(4-5):543-50. PubMed ID: 11543182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.
    Miyamoto K; Hoshino T; Yamashita M; Ueda J
    Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat.
    Miyamoto K; Yamamoto R; Fujii S; Soga K; Hoson T; Shimazu T; Masuda Y; Kamisaka S; Ueda J
    J Plant Res; 1999 Dec; 112(1108):413-8. PubMed ID: 11543174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.
    Link BM; Cosgrove DJ
    J Plant Res; 1999 Dec; 112(1108):507-16. PubMed ID: 11543180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
    Link BM; Busse JS; Stankovic B
    Astrobiology; 2014 Oct; 14(10):866-75. PubMed ID: 25317938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.
    Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural analysis of organization of roots obtained from cell cultures at clinostating and under microgravity.
    Podlutsky AG
    Adv Space Res; 1992; 12(1):93-8. PubMed ID: 11536994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads.
    Gaina V; Svegzdiene D; Rakleviciene D; Koryzniene D; Staneviciene R; Laurinavicius R
    Adv Space Res; 2003; 31(10):2275-81. PubMed ID: 14686443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravity as an obligatory factor in normal higher plant growth and development.
    Merkys AJ; Laurinavichius RS; Rupainene OY; Shvegzhdene DV; Yaroshius AV
    Adv Space Res; 1981; 1(14):109-16. PubMed ID: 11541699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of weightlessness and of artificial gravity on irradiated lettuce seeds.
    Grigoriev YG; Miller AT; Nevzgodina LV; Krustyn AO; Shteine BA
    Life Sci Space Res; 1977; 15():285-9. PubMed ID: 11962502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions.
    Kuang A; Xiao Y; Musgrave ME
    Ann Bot; 1996; 78():343-51. PubMed ID: 11540608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin polar transport in Arabidopsis under simulated microgravity conditions--relevance to growth and development.
    Miyamoto K; Oka M; Yamamoto R; Masuda Y; Hoson T; Kamisaka S; Ueda J
    Adv Space Res; 1999; 23(12):2033-6. PubMed ID: 11710387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures.
    Kamal KY; Hemmersbach R; Medina FJ; Herranz R
    Life Sci Space Res (Amst); 2015 Apr; 5():47-52. PubMed ID: 26177849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.