These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11803964)

  • 1. Effect of artificial electric fields on plants grown under microgravity conditions.
    Nechitailo G; Gordeev A
    Adv Space Res; 2001; 28(4):629-31. PubMed ID: 11803964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level.
    Belyavskaya NA
    Adv Space Res; 1996; 17(6-7):169-77. PubMed ID: 11538612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors.
    Nechitailo G; Gordeev A
    Adv Space Res; 2004; 34(7):1562-5. PubMed ID: 15880892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation of plants under microgravity and its simulation.
    Zhadko SI; Polulyakh YuA ; Vorobyeva TV; Baraboy VA
    Adv Space Res; 1994; 14(8):103-6. PubMed ID: 11537904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of seedling shoots under space flight conditions.
    Merkys AJ; Mashinsky AL; Laurinavichius RS; Nechitailo GS; Yaroshius AV; Izupak EA
    Life Sci Space Res; 1975; 13():53-7. PubMed ID: 11913431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STS-95 space experiment for plant growth and development, and auxin polar transport.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Sato K; Fujii S; Kamigaichi S; Izumi R; Ishioka N; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 2000 Jun; 14(2):47-57. PubMed ID: 11543421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Graviresponse in higher plants and its regulation in molecular bases: relevance to growth and development, and auxin polar transport in etiolated pea seedlings].
    Ueda J; Miyamoto K
    Biol Sci Space; 2003 Aug; 17(2):116-25. PubMed ID: 14555809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statocyte polarity and gravisensitivity in seedling roots grown in microgravity.
    Perbal G; Driss-Ecole D; Tewinkel M; Volkmann D
    Planta; 1997 Sep; 203(Suppl 1):S57-62. PubMed ID: 11540329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Fujii S; Mukai C; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    J Plant Res; 1999 Dec; 112(1108):487-92. PubMed ID: 11543177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of root elongation in microgravity by an applied electric field.
    Wolverton C; Mullen JL; Aizawa S; Yoshizaki I; Kamigaichi S; Mukai C; Shimazu T; Fukui K; Evans ML; Ishikawa H
    J Plant Res; 1999 Dec; 112(1108):493-6. PubMed ID: 11543178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of gravitropic response of primary roots by submergence.
    Hoson T; Kamisaka S; Masuda Y
    Planta; 1996 May; 199(1):100-4. PubMed ID: 11540722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and gravity sensing of cress roots under microgravity.
    Volkmann D; Behrens HM; Sievers A
    Naturwissenschaften; 1986; 73():438-41. PubMed ID: 11540626
    [No Abstract]   [Full Text] [Related]  

  • 14. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment.
    Miyamoto K; Inui A; Uheda E; Oka M; Kamada M; Yamazaki C; Shimazu T; Kasahara H; Sano H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2019 Feb; 20():1-11. PubMed ID: 30797426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport".
    Kamada M; Oka M; Miyamoto K; Uheda E; Yamazaki C; Shimazu T; Sano H; Kasahara H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2020 Aug; 26():55-61. PubMed ID: 32718687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microgravity on the growth of Lepidium roots.
    Antonsen F; Johnsson A
    J Gravit Physiol; 1998 Oct; 5(2):13-21. PubMed ID: 11541898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effect of weightlessness following exposure to vibration.
    Gray SW; Edwards BF
    Life Sci Space Res; 1970; 8():25-32. PubMed ID: 11826887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random root movements in weightlessness.
    Johnsson A; Karlsson C; Iversen TH; Chapman DK
    Physiol Plant; 1996 Feb; 96(2):169-78. PubMed ID: 11541141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental concept for examination of biological effects of magnetic field concealed by gravity.
    Yamashita M; Tomita-Yokotani K; Hashimoto H; Takai M; Tsushima M; Nakamura T
    Adv Space Res; 2004; 34(7):1575-8. PubMed ID: 15880894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic straightening of gravitropically curved cress roots in microgravity.
    Stankovic B; Antonsen F; Johnsson A; Volkmann D; Sack FD
    Adv Space Res; 2001; 27(5):915-9. PubMed ID: 11594376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.