BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11804081)

  • 1. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Everglades Nutrient Removal Project test cells: STA optimization--status of the research at the north site.
    Newman JM; Lynch T
    Water Sci Technol; 2001; 44(11-12):117-22. PubMed ID: 11804082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus removal from Everglades agricultural area runoff by submerged aquatic vegetation/limerock treatment technology: an overview of research.
    Gu B; DeBusk TA; Dierberg FE; Chimney MJ; Pietro KC; Aziz T
    Water Sci Technol; 2001; 44(11-12):101-8. PubMed ID: 11804080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a recirculating wetland filter designed to remove particulate phosphorus for restoration of Lake Apopka (Florida, USA).
    Coveney MF; Lowe EF; Battoe LE
    Water Sci Technol; 2001; 44(11-12):131-6. PubMed ID: 11804084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of macrophyte-based systems for phosphorus removal: an overview of 25 years of research and operational results in Florida.
    DeBusk TA; Dierber FE; Reddy KR
    Water Sci Technol; 2001; 44(11-12):39-46. PubMed ID: 11804124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surmounting the engineering challenges of Everglades restoration.
    Goforth GF
    Water Sci Technol; 2001; 44(11-12):295-302. PubMed ID: 11804110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rerating capacity of a constructed wetland treatment system.
    Jackson JA; Sees M
    Water Sci Technol; 2001; 44(11-12):435-40. PubMed ID: 11804131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term performance summary for the Boot Wetland Treatment System.
    Martin JR; Keller CH; Clarke RA; Knight RL
    Water Sci Technol; 2001; 44(11-12):413-20. PubMed ID: 11804128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal changes in soil phosphorus characteristics in a submerged aquatic vegetation-dominated treatment wetland.
    Zamorano MF; Bhomia RK; Chimney MJ; Ivanoff D
    J Environ Manage; 2018 Dec; 228():363-372. PubMed ID: 30241041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.
    Dierberg FE; DeBusk TA; Jackson SD; Chimney MJ; Pietro K
    Water Res; 2002 Mar; 36(6):1409-22. PubMed ID: 11996331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area.
    Dierberg FE; DeBusk TA; Henry JL; Jackson SD; Galloway S; Gabriel MC
    J Environ Qual; 2012; 41(5):1661-73. PubMed ID: 23099958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.
    Gervin L; Brix H
    Water Sci Technol; 2001; 44(11-12):171-6. PubMed ID: 11804090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO; Morris SG; Smith G; Hunt N
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies.
    Chimney MJ; Goforth G
    Water Sci Technol; 2001; 44(11-12):93-100. PubMed ID: 11804164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollutant removal efficacy of three wet detention ponds.
    Mallin MA; Ensign SH; Wheeler TL; Mayes DB
    J Environ Qual; 2002; 31(2):654-60. PubMed ID: 11931459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland.
    Cameron K; Madramootoo C; Crolla A; Kinsley C
    Water Res; 2003 Jul; 37(12):2803-12. PubMed ID: 12767284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.