These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11804096)

  • 41. An assessment of mosquito breeding and control in four surface flow wetlands in tropical-subtropical Australia.
    Greenway M; Dale P; Chapman H
    Water Sci Technol; 2003; 48(5):249-56. PubMed ID: 14621171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands.
    Brix H; Arias CA; del Bubba M
    Water Sci Technol; 2001; 44(11-12):47-54. PubMed ID: 11804137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater.
    Hill VR; Sobsey MD
    Water Sci Technol; 2001; 44(11-12):215-22. PubMed ID: 11804098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a conceptual model for vertical flow wetland metabolism.
    Giraldo E; Zárate E
    Water Sci Technol; 2001; 44(11-12):273-80. PubMed ID: 11804107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plants as ecosystem engineers in subsurface-flow treatment wetlands.
    Tanner CC
    Water Sci Technol; 2001; 44(11-12):9-17. PubMed ID: 11804163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.
    Tietz A; Langergraber G; Watzinger A; Haberl R; Kirschner AK
    Water Res; 2008 Mar; 42(6-7):1622-34. PubMed ID: 17991505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.
    Vacca G; Wand H; Nikolausz M; Kuschk P; Kästner M
    Water Res; 2005 Apr; 39(7):1361-73. PubMed ID: 15862336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incorporation of oxygen contribution by plant roots into classical dissolved oxygen deficit model for a subsurface flow treatment wetland.
    Bezbaruah AN; Zhang TC
    Water Sci Technol; 2009; 59(6):1179-84. PubMed ID: 19342814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland.
    Cameron K; Madramootoo C; Crolla A; Kinsley C
    Water Res; 2003 Jul; 37(12):2803-12. PubMed ID: 12767284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of water table fluctuations on nutrient dynamics in the rhizosphere of common reed (Phragmites australis).
    Urbanc-Bercic O; Gaberscik A
    Water Sci Technol; 2001; 44(11-12):245-50. PubMed ID: 11804102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland.
    Bezbaruah AN; Zhang TC
    Biotechnol Bioeng; 2005 Feb; 89(3):308-18. PubMed ID: 15744841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.
    Mayes WM; Aumônier J; Jarvis AP
    Water Sci Technol; 2009; 59(11):2253-63. PubMed ID: 19494466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protection of surface water against contamination by wetland systems in Poland.
    Obarska-Pempkowiak H; Ozimek T; Chmiel W
    Water Sci Technol; 2001; 44(11-12):325-30. PubMed ID: 11804114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Does batch operation enhance oxidation in subsurface constructed wetlands?
    Stein OR; Hook PB; Biederman JA; Allen WC; Borden DJ
    Water Sci Technol; 2003; 48(5):149-56. PubMed ID: 14621159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organic matter distribution of the root zone in a constructed subsurface flow wetland.
    Tuan LA; Wyseure G
    Commun Agric Appl Biol Sci; 2007; 72(1):297-300. PubMed ID: 18018906
    [No Abstract]   [Full Text] [Related]  

  • 56. Performance of horizontal subsurface-flow treatment wetlands in fecal bacteria removal.
    Sacco C; Pizzo A; Santomauro F; Tiscione E; Burrini D; Lepri L; Del Bubba M
    Ann Ig; 2004; 16(3):429-37. PubMed ID: 15368934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
    Ye ZH; Lin ZQ; Whiting SN; de Souza MP; Terry N
    Chemosphere; 2003 Sep; 52(9):1571-9. PubMed ID: 12867190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The distribution of iron oxidation states in a constructed wetland as an indicator of its redox properties.
    Diáková K; Holcová V; Síma J; Dusek J
    Chem Biodivers; 2006 Dec; 3(12):1288-300. PubMed ID: 17193243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pollutant removal efficacy of three wet detention ponds.
    Mallin MA; Ensign SH; Wheeler TL; Mayes DB
    J Environ Qual; 2002; 31(2):654-60. PubMed ID: 11931459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of agricultural wastewater in two experimental combined constructed wetland systems in a tropical climate.
    Kantawanichkul S; Somprasert S; Aekasin U; Shutes RB
    Water Sci Technol; 2003; 48(5):199-205. PubMed ID: 14621165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.