These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11804167)

  • 1. Non-invasive assessment of arterial distension waveforms using gradient-based hough transform and power Doppler ultrasound imaging.
    Wu SM; Shau YW; Chong FC; Hsieh FJ
    Med Biol Eng Comput; 2001 Nov; 39(6):627-32. PubMed ID: 11804167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of arterial distension based on continuous wave Doppler ultrasound with an improved Hilbert-Huang processing.
    Zhang Y; Su N; Li Z; Gou Z; Chen Q; Zhang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):203-13. PubMed ID: 20040447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of dual Doppler velocity measurements to estimate volume pulsations of an arterial segment.
    Hartley CJ; Reddy AK; Madala S; Entman ML; Taffet GE
    Ultrasound Med Biol; 2010 Jul; 36(7):1169-75. PubMed ID: 20620703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive assessment of the viscoelasticity of peripheral arteries.
    Shau YW; Wang CL; Shieh JY; Hsu TC
    Ultrasound Med Biol; 1999 Nov; 25(9):1377-88. PubMed ID: 10626625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the arterial distension waveform derived from tissue Doppler imaging (TDI): an in vitro study on precision.
    Dineley JA; McDicken WN; Hoskins PR
    Ultrasound Med Biol; 2007 Jul; 33(7):1123-31. PubMed ID: 17434666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive measurement of mechanical properties of arteries in health and disease.
    Hoeks AP; Brands PJ; Willigers JM; Reneman RS
    Proc Inst Mech Eng H; 1999; 213(3):195-202. PubMed ID: 10490292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of multiple arterial stenoses using three-dimensional power Doppler angiography.
    Guo Z; Durand LG; Allard L; Cloutier G; Fenster A
    J Vasc Surg; 1998 Apr; 27(4):681-8. PubMed ID: 9576082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the arterial distension waveform using Doppler signal processing.
    Hoeks AP; Brands PJ; Reneman RS
    J Hypertens Suppl; 1992 Aug; 10(6):S19-22. PubMed ID: 1432319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to estimate wall shear rate with a clinical ultrasound scanner.
    Blake JR; Meagher S; Fraser KH; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2008 May; 34(5):760-74. PubMed ID: 18295392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical aspects of compliance assessment.
    Hoeks AP; Brands PJ; Reneman RS
    Arch Mal Coeur Vaiss; 1991 Sep; 84 Spec No 3():77-81. PubMed ID: 1835365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denoising of arterial and venous Doppler signals using discrete wavelet transform: effect on clinical parameters.
    Tokmakçi M; Erdoğan N
    Contemp Clin Trials; 2009 May; 30(3):192-200. PubMed ID: 19470316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure.
    Kips J; Vanmolkot F; Mahieu D; Vermeersch S; Fabry I; de Hoon J; Van Bortel L; Segers P
    Physiol Meas; 2010 Apr; 31(4):543-53. PubMed ID: 20208093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric blood flow measurement by simultaneous Doppler signal and B-mode image processing: a feasibility study.
    Willink R; Evans DH
    Ultrasound Med Biol; 1995; 21(4):481-92. PubMed ID: 7571141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An arterial wall motion test phantom for the evaluation of wall motion software.
    Hammer SJ; Dineley J; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2007 Sep; 33(9):1504-11. PubMed ID: 17587485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive evaluation of the conduit function and the buffering function of large arteries in man.
    Demolis PD; Asmar RG; Levy BI; Safar ME
    Clin Physiol; 1991 Nov; 11(6):553-64. PubMed ID: 1663017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical validation of common carotid artery wall distension assessment based on multigate Doppler processing.
    Morganti T; Ricci S; Vittone F; Palombo C; Tortoli P
    Ultrasound Med Biol; 2005 Jul; 31(7):937-45. PubMed ID: 15972199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity.
    Cloutier G; Qin Z; Garcia D; Soulez G; Oliva V; Durand LG
    Ultrasound Med Biol; 2000 Nov; 26(9):1489-501. PubMed ID: 11179623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.