BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11804344)

  • 1. Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer.
    Choi H; Park CS; Kim BG; Cho JW; Park JB; Bae YS; Bae DS
    Mol Cells; 2001 Dec; 12(3):412-7. PubMed ID: 11804344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH.
    Kim JR; Yoon HW; Kwon KS; Lee SR; Rhee SG
    Anal Biochem; 2000 Aug; 283(2):214-21. PubMed ID: 10906242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin.
    Hurne AM; Chai CL; Waring P
    J Biol Chem; 2000 Aug; 275(33):25202-6. PubMed ID: 10827185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism.
    Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and localization of brain-type creatine kinase in sodium chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
    Friedman DL; Roberts R
    J Biol Chem; 1992 Feb; 267(6):4270-6. PubMed ID: 1310991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes.
    Payne RM; Haas RC; Strauss AW
    Biochim Biophys Acta; 1991 Jul; 1089(3):352-61. PubMed ID: 1859839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteinase K processing of rabbit muscle creatine kinase.
    Leydier C; Andersen JS; Couthon F; Forest E; Marcillat O; Denoroy L; Vial C; Clottes E
    J Protein Chem; 1997 Jan; 16(1):67-74. PubMed ID: 9055209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK.
    Stolz M; Wallimann T
    J Cell Sci; 1998 May; 111 ( Pt 9)():1207-16. PubMed ID: 9547297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The active site of creatine kinase. Affinity labeling of cysteine 282 with N-(2,3-epoxypropyl)-N-amidinoglycine.
    Buechter DD; Medzihradszky KF; Burlingame AL; Kenyon GL
    J Biol Chem; 1992 Feb; 267(4):2173-8. PubMed ID: 1733925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase.
    Wang PF; McLeish MJ; Kneen MM; Lee G; Kenyon GL
    Biochemistry; 2001 Oct; 40(39):11698-705. PubMed ID: 11570870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes.
    Haas RC; Strauss AW
    J Biol Chem; 1990 Apr; 265(12):6921-7. PubMed ID: 2324105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD44 Receptor-Mediated/Reactive Oxygen Species-Sensitive Delivery of Nanophotosensitizers against Cervical Cancer Cells.
    Yoon J; Kim H; Jeong YI; Yang HS
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: in vitro and in silico Study.
    Tania M; Shawon J; Saif K; Kiefer R; Khorram MS; Halim MA; Khan MA
    Curr Cancer Drug Targets; 2019; 19(2):152-159. PubMed ID: 30182857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MFAP5 suppression inhibits migration/invasion, regulates cell cycle and induces apoptosis via promoting ROS production in cervical cancer.
    Li Q; Zhang Y; Jiang Q
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):51-58. PubMed ID: 30454902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.
    Kim B; Kim HS; Jung EJ; Lee JY; K Tsang B; Lim JM; Song YS
    Mol Carcinog; 2016 May; 55(5):918-28. PubMed ID: 25980682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing glycolysis.
    Li XH; Chen XJ; Ou WB; Zhang Q; Lv ZR; Zhan Y; Ma L; Huang T; Yan YB; Zhou HM
    Int J Biochem Cell Biol; 2013 May; 45(5):979-86. PubMed ID: 23416112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.