These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11804495)

  • 1. Interplay of orbital symmetry and nonstatistical dynamics in the thermal rearrangements of bicyclo[n.1.0]polyenes.
    Reyes MB; Lobkovsky EB; Carpenter BK
    J Am Chem Soc; 2002 Jan; 124(4):641-51. PubMed ID: 11804495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rearrangements of C(7)H(6) Isomers: Computational Studies of the Interconversions of Bicyclo[3.2.0]hepta-1,3,6-triene, Bicyclo[3.2.0]hepta-3,6-diene-2-ylidene, Bicyclo[3.2.0]hepta-2,3,6-triene, and Cyclohepta-1,2,4,6-tetraene.
    Patterson EV; McMahon RJ
    J Org Chem; 1997 Jun; 62(13):4398-4405. PubMed ID: 11671766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential surface for the quadruply degenerate rearrangement of bicyclo[3.1.0]hex-2-ene.
    Suhrada CP; Houk KN
    J Am Chem Soc; 2002 Jul; 124(30):8796-7. PubMed ID: 12137523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of an anti-Bredt compound, bicyclo[3.2.2]nona-1,6,8-triene, via the isomerization of tricyclo[3.2.2.0(2,4)]nona-2,6-diene.
    Lee GA; Lin HC
    Org Lett; 2014 Oct; 16(20):5275-7. PubMed ID: 25265044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of sterically congested 1,5-hexadienes: Ab initio and DFT calculations on the competition between cope rearrangements and disrotatory cyclobutene ring-opening reactions of bridged syn-tricyclo[4.2.0.0(2,5)]octa-3,7-dienes.
    Bethke S; Hrovat DA; Borden WT; Gleiter R
    J Org Chem; 2004 May; 69(10):3294-301. PubMed ID: 15132534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy-Atom Tunneling in Bicyclo[4.1.0]hepta-2,4,6-trienes.
    Prado Merini M; Schleif T; Sander W
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309717. PubMed ID: 37698374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possibility of [1,5] sigmatropic shifts in bicyclo[4.2.0]octa-2,4-dienes.
    Goossens H; Winne JM; Wouters S; Hermosilla L; De Clercq PJ; Waroquier M; Van Speybroeck V; Catak S
    J Org Chem; 2015 Mar; 80(5):2609-20. PubMed ID: 25615563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CASSCF and CASPT2 calculations on the cleavage and ring inversion of bicyclo[2.2.0]hexane find that these reactions involve formation of a common twist-boat diradical intermediate.
    Hrovat DA; Borden WT
    J Am Chem Soc; 2001 May; 123(17):4069-72. PubMed ID: 11457158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiconfigurational Calculations and Nonadiabatic Molecular Dynamics Explain Tricyclooctadiene Photochemical Chemoselectivity.
    Li J; Lopez SA
    J Phys Chem A; 2020 Sep; 124(38):7623-7632. PubMed ID: 32866386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-examining the mechanisms of competing pericyclic reactions of 1,3,7-octatriene.
    Gutierrez O; Harrison JG; Pemberton RP; Tantillo DJ
    Chemistry; 2012 Aug; 18(35):11029-35. PubMed ID: 22836223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vinylphosphirane-phospholene rearrangements: pericyclic [1,3]-sigmatropic shifts or not?
    Bulo RE; Ehlers AW; Grimme S; Lammertsma K
    J Am Chem Soc; 2002 Nov; 124(46):13903-10. PubMed ID: 12431122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one to the ketonic tautomer of phenol. Computational evidence for the formation of a diradical rather than a zwitterionic intermediate.
    Gómez I; Olivella S; Reguero M; Riera A; Solé A
    J Am Chem Soc; 2002 Dec; 124(51):15375-84. PubMed ID: 12487613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational investigation of the conrotatory and disrotatory isomerization channels of bicyclo[1.1.0]butane to buta-1,3-diene: a completely renormalized coupled-cluster study.
    Kinal A; Piecuch P
    J Phys Chem A; 2007 Feb; 111(4):734-42. PubMed ID: 17249766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The iconoclastic dynamics of the 1,2,6-heptatriene rearrangement.
    Debbert SL; Carpenter BK; Hrovat DA; Borden WT
    J Am Chem Soc; 2002 Jul; 124(27):7896-7. PubMed ID: 12095322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal rearrangements of spiro[2.4]hepta-1,4,6-trienes.
    Billups WE; Saini RK; Litosh VA; Alemany LB; Wilson WK; Wiberg KB
    J Org Chem; 2002 Jun; 67(13):4436-40. PubMed ID: 12076139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CASSCF Calculations Reveal Competitive Chair (Pericyclic) and Boat (Pseudopericyclic) Transition States for the [3,3] Sigmatropic Rearrangement of Allyl Esters.
    Kreiman HW; Batali ME; Jamieson CS; Lyon MA; Duncan JA
    J Org Chem; 2018 Feb; 83(4):1717-1726. PubMed ID: 29350923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effects in the interconversion of phenylcarbene, bicyclo[4.1.0]hepta-2,4,6-triene, and 1,2,4,6-cycloheptatetraene.
    Geise CM; Hadad CM
    J Org Chem; 2002 Apr; 67(8):2532-40. PubMed ID: 11950298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quinones of benzocyclobutadiene: a computational study.
    Golas E; Lewars E; Liebman JF
    J Phys Chem A; 2009 Aug; 113(34):9485-9500. PubMed ID: 19655744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stable silicon congener of highly strained bicyclo[3.2.0]hepta-1,3,6-triene.
    Kon Y; Ogasawara J; Sakamoto K; Kabuto C; Kira M
    J Am Chem Soc; 2003 Aug; 125(31):9310-1. PubMed ID: 12889957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on the thermal ring opening rearrangement of 1H-bicyclo[3.1.0]hexa-3,5-dien-2-one: a case of two state reactivity.
    González-Navarrete P; Coto PB; Polo V; Andrés J
    Phys Chem Chem Phys; 2009 Sep; 11(33):7189-96. PubMed ID: 19672528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.