BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11805094)

  • 1. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin.
    Clarke TE; Braun V; Winkelmann G; Tari LW; Vogel HJ
    J Biol Chem; 2002 Apr; 277(16):13966-72. PubMed ID: 11805094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD.
    Krewulak KD; Shepherd CM; Vogel HJ
    Biometals; 2005 Aug; 18(4):375-86. PubMed ID: 16158230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of the ferric siderophore binding protein FhuD complexed with gallichrome.
    Clarke TE; Ku SY; Dougan DR; Vogel HJ; Tari LW
    Nat Struct Biol; 2000 Apr; 7(4):287-91. PubMed ID: 10742172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions.
    Clarke TE; Rohrbach MR; Tari LW; Vogel HJ; Köster W
    Biometals; 2002 Jun; 15(2):121-31. PubMed ID: 12046920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
    Ferguson AD; Braun V; Fiedler HP; Coulton JW; Diederichs K; Welte W
    Protein Sci; 2000 May; 9(5):956-63. PubMed ID: 10850805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.
    Köster W
    Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.
    Rohrbach MR; Braun V; Köster W
    J Bacteriol; 1995 Dec; 177(24):7186-93. PubMed ID: 8522527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo reconstitution of an active siderophore transport system by a binding protein derivative lacking a signal sequence.
    Rohrback MR; Paul S; Köster W
    Mol Gen Genet; 1995 Jul; 248(1):33-42. PubMed ID: 7651325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein.
    Köster W; Braun V
    J Biol Chem; 1990 Dec; 265(35):21407-10. PubMed ID: 2254301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V
    Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12.
    Groeger W; KOstert W
    Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2759-2769. PubMed ID: 9802017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between TonB from Escherichia coli and the periplasmic protein FhuD.
    Carter DM; Miousse IR; Gagnon JN; Martinez E; Clements A; Lee J; Hancock MA; Gagnon H; Pawelek PD; Coulton JW
    J Biol Chem; 2006 Nov; 281(46):35413-24. PubMed ID: 16928679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake.
    Mademidis A; Köster W
    Mol Gen Genet; 1998 Apr; 258(1-2):156-65. PubMed ID: 9613584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.
    Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ
    Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition of synthetic siderophore analogues: a study with receptor-deficient and fhu(A-B) deletion mutants of Escherichia coli.
    Gaspar M; Santos MA; Krauter K; Winkelmann G
    Biometals; 1999 Sep; 12(3):209-18. PubMed ID: 10581683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sideromycins: tools and antibiotics.
    Braun V; Pramanik A; Gwinner T; Köberle M; Bohn E
    Biometals; 2009 Feb; 22(1):3-13. PubMed ID: 19130258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins.
    Ho WW; Li H; Eakanunkul S; Tong Y; Wilks A; Guo M; Poulos TL
    J Biol Chem; 2007 Dec; 282(49):35796-802. PubMed ID: 17925389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.