BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 11805294)

  • 21. Structural Changes of the Active Center during the Photoactivation of Xenopus (6-4) Photolyase.
    Yamada D; Yamamoto J; Zhang Y; Iwata T; Hitomi K; Getzoff ED; Iwai S; Kandori H
    Biochemistry; 2016 Feb; 55(4):715-23. PubMed ID: 26719910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do photolyases need to provide considerable activation energy for the splitting of cyclobutane pyrimidine dimer radical anions?
    Song QH; Tang WJ; Ji XB; Wang HB; Guo QX
    Chemistry; 2007; 13(27):7762-70. PubMed ID: 17568458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the N(5)-H bond of the isoalloxazine moiety of flavin radicals by X- and W-band pulsed electron-nuclear double resonance.
    Weber S; Kay CW; Bacher A; Richter G; Bittl R
    Chemphyschem; 2005 Feb; 6(2):292-9. PubMed ID: 15751352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of Xenopus laevis.
    Tanida H; Tahara E; Mochizuki M; Yamane Y; Ryoji M
    FEBS J; 2005 Dec; 272(23):6098-108. PubMed ID: 16302973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo.
    Kavakli IH; Sancar A
    Biochemistry; 2004 Dec; 43(48):15103-10. PubMed ID: 15568802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What is adenine doing in photolyase?
    Acocella A; Jones GA; Zerbetto F
    J Phys Chem B; 2010 Mar; 114(11):4101-6. PubMed ID: 20184295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro.
    Payne G; Heelis PF; Rohrs BR; Sancar A
    Biochemistry; 1987 Nov; 26(22):7121-7. PubMed ID: 2827744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the middle residue in the triple tryptophan electron transfer chain of DNA photolyase: ultrafast spectroscopy of a Trp-->Phe mutant.
    Lukacs A; Eker AP; Byrdin M; Villette S; Pan J; Brettel K; Vos MH
    J Phys Chem B; 2006 Aug; 110(32):15654-8. PubMed ID: 16898706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the g-matrix orientation in flavin radicals by high-field/high-frequency electron-nuclear double resonance.
    Kay CW; Schleicher E; Hitomi K; Todo T; Bittl R; Weber S
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S96-102. PubMed ID: 16235198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30 ps.
    Lukacs A; Eker AP; Byrdin M; Brettel K; Vos MH
    J Am Chem Soc; 2008 Nov; 130(44):14394-5. PubMed ID: 18850708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.
    Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP
    J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoinduced spin-polarized radical pair formation in a DNA photolyase.substrate complex at low temperature.
    Rustandi RR; Jorns MS
    Biochemistry; 1995 Feb; 34(7):2284-8. PubMed ID: 7857939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron nuclear double resonance differentiates complementary roles for active site histidines in (6-4) photolyase.
    Schleicher E; Hitomi K; Kay CWM; Getzoff ED; Todo T; Weber S
    J Biol Chem; 2007 Feb; 282(7):4738-4747. PubMed ID: 17164245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
    Yamada D; Zhang Y; Iwata T; Hitomi K; Getzoff ED; Kandori H
    Biochemistry; 2012 Jul; 51(29):5774-83. PubMed ID: 22747528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarized transient absorption to resolve electron transfer between tryptophans in DNA photolyase.
    Byrdin M; Villette S; Espagne A; Eker AP; Brettel K
    J Phys Chem B; 2008 Jun; 112(22):6866-71. PubMed ID: 18471009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the covalently bound anionic flavin radical in monoamine oxidase a by electron paramagnetic resonance.
    Kay CW; El Mkami H; Molla G; Pollegioni L; Ramsay RR
    J Am Chem Soc; 2007 Dec; 129(51):16091-7. PubMed ID: 18044898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational studies of DNA photolyase.
    Harrison CB; O'Neil LL; Wiest O
    J Phys Chem A; 2005 Aug; 109(32):7001-12. PubMed ID: 16834063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A QM/MM investigation of thymine dimer radical anion splitting catalyzed by DNA photolyase.
    Masson F; Laino T; Rothlisberger U; Hutter J
    Chemphyschem; 2009 Feb; 10(2):400-10. PubMed ID: 19090522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.