These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 11805329)

  • 1. Actin cable dynamics in budding yeast.
    Yang HC; Pon LA
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):751-6. PubMed ID: 11805329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables.
    Buttery SM; Yoshida S; Pellman D
    Mol Biol Cell; 2007 May; 18(5):1826-38. PubMed ID: 17344480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live cell imaging of mitochondrial movement along actin cables in budding yeast.
    Fehrenbacher KL; Yang HC; Gay AC; Huckaba TM; Pon LA
    Curr Biol; 2004 Nov; 14(22):1996-2004. PubMed ID: 15556861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae.
    Ozaki-Kuroda K; Yamamoto Y; Nohara H; Kinoshita M; Fujiwara T; Irie K; Takai Y
    Mol Cell Biol; 2001 Feb; 21(3):827-39. PubMed ID: 11154270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae.
    Huckaba TM; Gay AC; Pantalena LF; Yang HC; Pon LA
    J Cell Biol; 2004 Nov; 167(3):519-30. PubMed ID: 15534003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical actin dynamics driven by formins and myosin V.
    Yu JH; Crevenna AH; Bettenbühl M; Freisinger T; Wedlich-Söldner R
    J Cell Sci; 2011 May; 124(Pt 9):1533-41. PubMed ID: 21486946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae.
    Simon VR; Karmon SL; Pon LA
    Cell Motil Cytoskeleton; 1997; 37(3):199-210. PubMed ID: 9227850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables.
    Garabedian MV; Wirshing A; Vakhrusheva A; Turegun B; Sokolova OS; Goode BL
    Mol Biol Cell; 2020 Aug; 31(18):1988-2001. PubMed ID: 32579428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCP1 encodes an actin-bundling protein in yeast.
    Winder SJ; Jess T; Ayscough KR
    Biochem J; 2003 Oct; 375(Pt 2):287-95. PubMed ID: 12868959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe.
    Pelham RJ; Chang F
    Nat Cell Biol; 2001 Mar; 3(3):235-44. PubMed ID: 11231572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.
    Maddox P; Chin E; Mallavarapu A; Yeh E; Salmon ED; Bloom K
    J Cell Biol; 1999 Mar; 144(5):977-87. PubMed ID: 10085295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antenna Mechanism of Length Control of Actin Cables.
    Mohapatra L; Goode BL; Kondev J
    PLoS Comput Biol; 2015 Jun; 11(6):e1004160. PubMed ID: 26107518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized growth in budding yeast in the absence of a localized formin.
    Gao L; Bretscher A
    Mol Biol Cell; 2009 May; 20(10):2540-8. PubMed ID: 19297522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast.
    Tang H; Bidone TC; Vavylonis D
    Cytoskeleton (Hoboken); 2015 Oct; 72(10):517-33. PubMed ID: 26538307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial polarized bud growth by endocytic recycling in the absence of actin cable-dependent vesicle transport in yeast.
    Yamamoto T; Mochida J; Kadota J; Takeda M; Bi E; Tanaka K
    Mol Biol Cell; 2010 Apr; 21(7):1237-52. PubMed ID: 20147449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast.
    Pruyne D; Gao L; Bi E; Bretscher A
    Mol Biol Cell; 2004 Nov; 15(11):4971-89. PubMed ID: 15371545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis.
    Gould CJ; Chesarone-Cataldo M; Alioto SL; Salin B; Sagot I; Goode BL
    J Biol Chem; 2014 Jun; 289(26):18290-301. PubMed ID: 24828508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel mutations in ACT1 and SLA2 that suppress the actin-cable-overproducing phenotype caused by overexpression of a dominant active form of Bni1p in Saccharomyces cerevisiae.
    Yoshiuchi S; Yamamoto T; Sakane H; Kadota J; Mochida J; Asaka M; Tanaka K
    Genetics; 2006 Jun; 173(2):527-39. PubMed ID: 16547104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables.
    Shin M; van Leeuwen J; Boone C; Bretscher A
    Mol Biol Cell; 2018 Apr; 29(8):923-936. PubMed ID: 29467252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of unregulated formin activity reveals how yeast can balance F-actin assembly between different microfilament-based organizations.
    Gao L; Bretscher A
    Mol Biol Cell; 2008 Apr; 19(4):1474-84. PubMed ID: 18234843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.