These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1180553)

  • 41. Mechanism of overproduction of orotic acid by a mutant of Brevibacterium ammoniagenes.
    Skodová H; Skoda J
    Appl Microbiol; 1969 Jan; 17(1):188-9. PubMed ID: 5774759
    [No Abstract]   [Full Text] [Related]  

  • 42. The capacity of orotic acid production in pyrimidine-deficient mutants of Brevibacterium ammoniagenes.
    Skodová H; Solínová H; Skoda J; Dyr J
    Folia Microbiol (Praha); 1969; 14(2):145-54. PubMed ID: 5786385
    [No Abstract]   [Full Text] [Related]  

  • 43. [Study on the kinetics of immobilized cells of Brevibacterium ammoniagenes MA-2 and Brevibacterium flavum MA-3].
    Hu YH; Shen SB; Ouyang PK
    Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(2):235-8. PubMed ID: 12148291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of guanosine diphosphate on microtubule assembly and stability.
    Jameson L; Caplow M
    J Biol Chem; 1980 Mar; 255(6):2284-92. PubMed ID: 6102089
    [No Abstract]   [Full Text] [Related]  

  • 45. Enzymatic synthesis of guanosine triphosphate from phytin and guanosine diphosphate.
    Biswas S; Biswas BB
    Biochim Biophys Acta; 1965 Dec; 108(4):710-3. PubMed ID: 5881349
    [No Abstract]   [Full Text] [Related]  

  • 46. Enzyme induction in Streptomyces hydrogenas, VII. Short-term accumulation of guanosine polyphosphates.
    Betz JW; Schneider BH; Träger L
    Hoppe Seylers Z Physiol Chem; 1977 Mar; 358(3):353-9. PubMed ID: 852821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Incorporation of adenine derivatives into the cells of Brevibacterium ammoniagenes ganA mutants producers of inosinic acid].
    Nudler AA; Erokhina LI
    Genetika; 1982 Sep; 18(9):1397-401. PubMed ID: 6890490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by the decrease in GTP or GDP.
    Ochi K; Kandala J; Freese E
    J Bacteriol; 1982 Aug; 151(2):1062-5. PubMed ID: 6807955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.
    Menezes CB; Durgante J; de Oliveira RR; Dos Santos VH; Rodrigues LF; Garcia SC; Dos Santos O; Tasca T
    Mol Biochem Parasitol; 2016 May; 207(1):10-8. PubMed ID: 27150347
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleotide and thioredoxin specificity of the manganese ribonucleotide reductase from Brevibacterium ammoniagenes.
    Willing A; Follmann H; Auling G
    Eur J Biochem; 1988 Jul; 175(1):167-73. PubMed ID: 3042394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of 32Pi into nucleotides, polyphosphates, and other acid-soluble compounds by Myxococcus xanthus during myxospore formation.
    Maeba PY; Shipman R
    J Bacteriol; 1978 Dec; 136(3):1058-69. PubMed ID: 102632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. External GTP alters the motility and elicits an oscillating membrane depolarization in Paramecium tetraurelia.
    Clark KD; Hennessey TM; Nelson DL
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3782-6. PubMed ID: 8387197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control by bacteriophage T4 of the reduction of adenosine nucleotide to deoxyadenosine nucleotide.
    Yeh YC; Tessman I
    J Biol Chem; 1972 May; 247(10):3252-4. PubMed ID: 4554915
    [No Abstract]   [Full Text] [Related]  

  • 54. Overproduction of thymidine by recombinant brevibacterium helvolum amplified with thymidine monophosphate phosphohydrolase gene from bacteriophage PBS2.
    Lee HC; Ahn JM; Lee SN; Kim JH
    Biotechnol Lett; 2004 Feb; 26(4):265-8. PubMed ID: 15055759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribonucleoside 3'-di- and -triphosphates. Synthesis of guanosine tetraphosphate (ppGpp).
    Kozarich JW; Chinault AC; Hecht SM
    Biochemistry; 1975 Mar; 14(5):981-8. PubMed ID: 235948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical and biological consequences of changing the specificity of p21ras from guanosine to xanthosine nucleotides.
    Schmidt G; Lenzen C; Simon I; Deuter R; Cool RH; Goody RS; Wittinghofer A
    Oncogene; 1996 Jan; 12(1):87-96. PubMed ID: 8552403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Mechanism of synthesis of adenylic nucleotides in Brevibacterium ammoniagenes ATSS N 6872].
    Rebrova TT; Debov SS
    Biokhimiia; 1970; 35(5):1046-50. PubMed ID: 5501662
    [No Abstract]   [Full Text] [Related]  

  • 58. Synthesis of deoxyguanosine polyphosphates and their interactions with the guanosine 5'-triphosphate requiring protein synthetic enzymes of Escherichia coli.
    Hamel E; Heimer EP; Nussbaum AL
    Biochemistry; 1975 Nov; 14(23):5055-60. PubMed ID: 1103965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intracellular levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) in cultures of Streptomyces griseus producing streptomycin.
    An G; Vining LC
    Can J Microbiol; 1978 May; 24(5):502-11. PubMed ID: 418858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Separation of cyclic nucleotides by thin-layer chromatography on polyethyleneimine cellulose.
    Böhme E; Schultz G
    Methods Enzymol; 1974; 38():27-38. PubMed ID: 4375759
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.