BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11805602)

  • 1. Spinal cord regeneration: from gene to transplants.
    Kwon BK; Tetzlaff W
    Spine (Phila Pa 1976); 2001 Dec; 26(24 Suppl):S13-22. PubMed ID: 11805602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory ensheathing cells: bridging the gap in spinal cord injury.
    Bartolomei JC; Greer CA
    Neurosurgery; 2000 Nov; 47(5):1057-69. PubMed ID: 11063098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central nervous system regeneration: mission impossible?
    Fry EJ
    Clin Exp Pharmacol Physiol; 2001 Apr; 28(4):253-8. PubMed ID: 11251636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory ensheathing glia: their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord.
    Franssen EH; de Bree FM; Verhaagen J
    Brain Res Rev; 2007 Nov; 56(1):236-58. PubMed ID: 17884174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal regeneration of different tracts following transplants of human glial restricted progenitors into the injured spinal cord in rats.
    Jin Y; Shumsky JS; Fischer I
    Brain Res; 2018 May; 1686():101-112. PubMed ID: 29408659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination.
    Blesch A; Tuszynski MH
    J Comp Neurol; 2003 Dec; 467(3):403-17. PubMed ID: 14608602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nerve regeneration after spinal cord trauma. Neurobiological progress and clinical expectations].
    Nacimiento W; Schmitt AB; Brook GA
    Nervenarzt; 1999 Aug; 70(8):702-13. PubMed ID: 10483570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
    Hendriks WT; Ruitenberg MJ; Blits B; Boer GJ; Verhaagen J
    Prog Brain Res; 2004; 146():451-76. PubMed ID: 14699980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury.
    Iannotti C; Li H; Yan P; Lu X; Wirthlin L; Xu XM
    Exp Neurol; 2003 Oct; 183(2):379-93. PubMed ID: 14552879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory ensheathing cells: their potential use for repairing the injured spinal cord.
    Lu J; Ashwell K
    Spine (Phila Pa 1976); 2002 Apr; 27(8):887-92. PubMed ID: 11935115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord.
    Oudega M
    Acta Physiol (Oxf); 2007 Feb; 189(2):181-9. PubMed ID: 17250568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord.
    Barakat DJ; Gaglani SM; Neravetla SR; Sanchez AR; Andrade CM; Pressman Y; Puzis R; Garg MS; Bunge MB; Pearse DD
    Cell Transplant; 2005; 14(4):225-40. PubMed ID: 15929557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.
    Bretzner F; Liu J; Currie E; Roskams AJ; Tetzlaff W
    Eur J Neurosci; 2008 Nov; 28(9):1795-807. PubMed ID: 18973595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of injured axons in the adult mammalian central nervous system.
    Tatagiba M; Brösamle C; Schwab ME
    Neurosurgery; 1997 Mar; 40(3):541-6; discussion 546-7. PubMed ID: 9055294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair.
    Blesch A; Lu P; Tuszynski MH
    Brain Res Bull; 2002 Apr; 57(6):833-8. PubMed ID: 12031281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons.
    Prieto M; Chauvet N; Alonso G
    Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.