BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11805631)

  • 1. Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression.
    Yamaura I; Yone K; Nakahara S; Nagamine T; Baba H; Uchida K; Komiya S
    Spine (Phila Pa 1976); 2002 Jan; 27(1):21-6. PubMed ID: 11805631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of apoptosis signal-regulating kinase 1 in mouse spinal cord under chronic mechanical compression: possible involvement of the stress-activated mitogen-activated protein kinase pathways in spinal cord cell apoptosis.
    Takenouchi T; Setoguchi T; Yone K; Komiya S
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1943-50. PubMed ID: 18708926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression.
    Inukai T; Uchida K; Nakajima H; Yayama T; Kobayashi S; Mwaka ES; Guerrero AR; Baba H
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2848-57. PubMed ID: 19949368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography.
    Takano M; Komaki Y; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Okano H; Nakamura M
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E66-72. PubMed ID: 23124261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice.
    Uchida K; Nakajima H; Hirai T; Yayama T; Chen K; Guerrero AR; Johnson WE; Baba H
    Spine (Phila Pa 1976); 2012 Dec; 37(26):2125-35. PubMed ID: 22648027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3.
    Bao F; Liu D
    Neuroscience; 2003; 116(1):59-70. PubMed ID: 12535938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoptosis of neurons and oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): possible pathomechanism of human cervical compressive myelopathy.
    Uchida K; Nakajima H; Watanabe S; Yayama T; Guerrero AR; Inukai T; Hirai T; Sugita D; Johnson WE; Baba H
    Eur Spine J; 2012 Mar; 21(3):490-7. PubMed ID: 21935678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice.
    Uchida K; Baba H; Maezawa Y; Kubota C
    Spine (Phila Pa 1976); 2002 Mar; 27(5):480-6. PubMed ID: 11880833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased choline acetyltransferase activity in the murine spinal cord motoneurons under chronic mechanical compression.
    Yato Y; Fujimura Y; Nakamura M; Watanabe M; Yabe Y
    Spinal Cord; 1997 Nov; 35(11):729-34. PubMed ID: 9392042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord.
    Li GL; Farooque M; Holtz A; Olsson Y
    Acta Neuropathol; 1999 Nov; 98(5):473-80. PubMed ID: 10541870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destructive pathological changes in the rat spinal cord due to chronic mechanical compression. Laboratory investigation.
    Xu P; Gong WM; Li Y; Zhang T; Zhang K; Yin DZ; Jia TH
    J Neurosurg Spine; 2008 Mar; 8(3):279-85. PubMed ID: 18312080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells.
    Tanabe F; Yone K; Kawabata N; Sakakima H; Matsuda F; Ishidou Y; Maeda S; Abematsu M; Komiya S; Setoguchi T
    Autophagy; 2011 Dec; 7(12):1462-71. PubMed ID: 22082874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Updates on ossification of posterior longitudinal ligament. Ossification front of posterior longitudinal ligament and cellular biological assessment of chronic mechanical compressed spinal cord].
    Uchida K; Nakajima H; Yayama T; Sato R; Baba H
    Clin Calcium; 2009 Oct; 19(10):1472-9. PubMed ID: 19794256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament.
    Kameyama T; Hashizume Y; Ando T; Takahashi A; Yanagi T; Mizuno J
    Brain; 1995 Feb; 118 ( Pt 1)():263-78. PubMed ID: 7895010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postmortem osseous and neuropathologic analysis of the rheumatoid cervical spine.
    Delamarter RB; Bohlman HH
    Spine (Phila Pa 1976); 1994 Oct; 19(20):2267-74. PubMed ID: 7846570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament.
    Matsuoka T; Yamaura I; Kurosa Y; Nakai O; Shindo S; Shinomiya K
    Spine (Phila Pa 1976); 2001 Feb; 26(3):241-8. PubMed ID: 11224859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathology of the spinal cord damaged by ossification of the posterior longitudinal ligament associated with spinal cord injury.
    Mizuno J; Nakagawa H; Hashizume Y
    Spinal Cord; 1999 Mar; 37(3):224-7. PubMed ID: 10213337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy.
    Hirai T; Uchida K; Nakajima H; Guerrero AR; Takeura N; Watanabe S; Sugita D; Yoshida A; Johnson WE; Baba H
    PLoS One; 2013; 8(5):e64528. PubMed ID: 23717624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome.
    Houten JK; Cooper PR
    Neurosurgery; 2003 May; 52(5):1081-7; discussion 1087-8. PubMed ID: 12699550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament.
    Hashizume Y; Iijima S; Kishimoto H; Yanagi T
    Acta Neuropathol; 1984; 63(2):123-30. PubMed ID: 6428155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.