BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11805861)

  • 1. Influence of ageing on the fatigability of isolated mouse skeletal muscles from mature and aged mice.
    Brotto MA; Nosek TM; Kolbeck RC
    Exp Physiol; 2002 Jan; 87(1):77-82. PubMed ID: 11805861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles.
    Kristensen AM; Nielsen OB; Pedersen TH; Overgaard K
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31292165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle.
    Zhang SJ; Bruton JD; Katz A; Westerblad H
    J Physiol; 2006 Apr; 572(Pt 2):551-9. PubMed ID: 16455685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of modulators of sarcoplasmic Ca2+ release on the development of skeletal muscle fatigue.
    Germinario E; Esposito A; Megighian A; Midrio M; Betto R; Danieli-Betto D
    J Appl Physiol (1985); 2004 Feb; 96(2):645-9. PubMed ID: 14715683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium and caffeine contractures of mouse muscles before and after fatiguing stimulation.
    Pagala M; Ravindran K; Amaladevi B; Namba T; Grob D
    Muscle Nerve; 1994 Aug; 17(8):852-9. PubMed ID: 8041392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [No influence of increased frequency on fatigability of tetanic contraction in rat atrophic soleus].
    Gao F; Yu ZB
    Sheng Li Xue Bao; 2005 Oct; 57(5):653-8. PubMed ID: 16220206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation.
    Gomez-Cabrera MC; Close GL; Kayani A; McArdle A; Viña J; Jackson MJ
    Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R2-8. PubMed ID: 19828843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2004 Apr; 82(4):249-61. PubMed ID: 15181463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging.
    González E; Messi ML; Delbono O
    J Membr Biol; 2000 Dec; 178(3):175-83. PubMed ID: 11148759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of dietary creatine supplements on the contractile properties of rat soleus and extensor digitorum longus muscles.
    McGuire M; Bradford A; MacDermott M
    Exp Physiol; 2001 Mar; 86(2):185-90. PubMed ID: 11429633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.
    Head SI; Greenaway B; Chan S
    PLoS One; 2011; 6(8):e22742. PubMed ID: 21850234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A K(ATP) channel deficiency affects resting tension, not contractile force, during fatigue in skeletal muscle.
    Gong B; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1351-8. PubMed ID: 11029282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70.
    Nosek TM; Brotto MA; Essig DA; Mestril R; Conover RC; Dillmann WH; Kolbeck RC
    Physiol Genomics; 2000 Nov; 4(1):25-33. PubMed ID: 11074010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.
    James RS; Wilson RS; Askew GN
    J Appl Physiol (1985); 2004 Feb; 96(2):545-52. PubMed ID: 14506097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle fatigue and physical endurance of young and old mice.
    Pagala MK; Ravindran K; Namba T; Grob D
    Muscle Nerve; 1998 Dec; 21(12):1729-39. PubMed ID: 9843076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile properties of skeletal muscles from young, adult and aged mice.
    Brooks SV; Faulkner JA
    J Physiol; 1988 Oct; 404():71-82. PubMed ID: 3253447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile properties of slow and fast skeletal muscles from protease activated receptor-1 null mice.
    Sitparan PK; Pagel CN; Pinniger GJ; Yoo HJ; Mackie EJ; Bakker AJ
    Muscle Nerve; 2014 Dec; 50(6):991-8. PubMed ID: 24692104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.