These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11805861)

  • 61. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.
    Tallis J; Hill C; James RS; Cox VM; Seebacher F
    J Appl Physiol (1985); 2017 Jan; 122(1):170-181. PubMed ID: 27856719
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Daily torpor reduces mass and changes stress and power output of soleus and EDL muscles in the Djungarian hamster, Phodopus sungorus.
    James RS; Tallis JA; Seebacher F; Storey K
    J Exp Biol; 2011 Sep; 214(Pt 17):2896-902. PubMed ID: 21832132
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages.
    Hanchard NC; Williamson M; Caley RW; Cooper RG
    Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Contraction and cation contents of skeletal soleus and EDL muscles in age-matched control and diabetic rats.
    Chonkar A; Hopkin R; Adeghate E; Singh J
    Ann N Y Acad Sci; 2006 Nov; 1084():442-51. PubMed ID: 17151321
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles.
    Eken T; Gundersen K
    J Physiol; 1988 Aug; 402():651-69. PubMed ID: 3236252
    [TBL] [Abstract][Full Text] [Related]  

  • 66. KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle.
    Gong B; Legault D; Miki T; Seino S; Renaud JM
    Am J Physiol Cell Physiol; 2003 Dec; 285(6):C1464-74. PubMed ID: 12917105
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles.
    Choisy S; Huchet-Cadiou C; Léoty C
    J Pharmacol Exp Ther; 2000 Sep; 294(3):884-93. PubMed ID: 10945837
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle.
    Tallis J; James RS; Cox VM; Duncan MJ
    J Appl Physiol (1985); 2012 Jan; 112(1):64-71. PubMed ID: 21979804
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Isometric contractile properties and caffeine sensitivity of the diaphragm, EDL and soleus in the mouse.
    Singh YN; Dryden WF
    Clin Exp Pharmacol Physiol; 1989 Jul; 16(7):581-9. PubMed ID: 2805431
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of stimulation frequency on force, power and fatigue of isolated mouse extensor digitorum longus muscle.
    Shelley SP; James RS; Eustace SJ; Eyre E; Tallis J
    J Exp Biol; 2022 May; 225(9):. PubMed ID: 35413119
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Skeletal muscle fatigue in vitro is temperature dependent.
    Segal SS; Faulkner JA; White TP
    J Appl Physiol (1985); 1986 Aug; 61(2):660-5. PubMed ID: 3745058
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.
    Ayre KJ; Hulbert AJ
    J Appl Physiol (1985); 1996 Feb; 80(2):464-71. PubMed ID: 8929585
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recovery of slow skeletal muscle after injury in the senescent rat.
    Vignaud A; Noirez P; Besse S; Rieu M; Barritault D; Ferry A
    Exp Gerontol; 2003 May; 38(5):529-37. PubMed ID: 12742530
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.
    Derave W; Eijnde BO; Ramaekers M; Hespel P
    Exp Gerontol; 2005 Jul; 40(7):562-72. PubMed ID: 16023814
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of acidification and increased extracellular potassium on dynamic muscle contractions in isolated rat muscles.
    Overgaard K; Højfeldt GW; Nielsen OB
    J Physiol; 2010 Dec; 588(Pt 24):5065-76. PubMed ID: 20962010
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuro-muscular function in the wobbler murine model of primary motor neuronopathy.
    Broch-Lips M; Pedersen TH; Riisager A; Schmitt-John T; Nielsen OB
    Exp Neurol; 2013 Oct; 248():406-15. PubMed ID: 23872513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metabolic recovery of mouse extensor digitorum longus and soleus muscle.
    Leijendekker WJ; Elzinga G
    Pflugers Arch; 1990 Apr; 416(1-2):22-7. PubMed ID: 2352837
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fibre types, calcium-sequestering proteins and metabolic enzymes in denervated and chronically stimulated muscles of the rat.
    Gundersen K; Leberer E; Lømo T; Pette D; Staron RS
    J Physiol; 1988 Apr; 398():177-89. PubMed ID: 2969050
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Adaptation of mouse skeletal muscle to a novel functional overload test: changes in myosin heavy chains and SERCA and physiological consequences.
    Awede B; Berquin A; Wuytack F; Lebacq J
    Eur J Appl Physiol Occup Physiol; 1999; 80(6):519-26. PubMed ID: 10541918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.