These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11806909)

  • 1. A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP.
    Minehardt TJ; Marzari N; Cooke R; Pate E; Kollman PA; Car R
    Biophys J; 2002 Feb; 82(2):660-75. PubMed ID: 11806909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd.
    Minehardt TJ; Cooke R; Pate E; Kollman PA
    Biophys J; 2001 Mar; 80(3):1151-68. PubMed ID: 11222280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies of the ATP hydrolysis mechanism of myosin.
    Okimoto N; Yamanaka K; Ueno J; Hata M; Hoshino T; Tsuda M
    Biophys J; 2001 Nov; 81(5):2786-94. PubMed ID: 11606291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain.
    Bauer CB; Holden HM; Thoden JB; Smith R; Rayment I
    J Biol Chem; 2000 Dec; 275(49):38494-9. PubMed ID: 10954715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the chemomechanical coupling of the myosin motor from simulation of its ATP hydrolysis mechanism.
    Schwarzl SM; Smith JC; Fischer S
    Biochemistry; 2006 May; 45(18):5830-47. PubMed ID: 16669626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrolysis activity of adenosine triphosphate in myosin: a theoretical analysis of anomeric effects and the nature of the transition state.
    Yang Y; Cui Q
    J Phys Chem A; 2009 Nov; 113(45):12439-46. PubMed ID: 19534504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic pressure probe of actin-myosin hydration changes during ATP hydrolysis.
    Highsmith S; Duignan K; Cooke R; Cohen J
    Biophys J; 1996 Jun; 70(6):2830-7. PubMed ID: 8744320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hypothesis about myosin catalysis.
    Onishi H; Ohki T; Mozhizuki N; Morales MF
    Adv Exp Med Biol; 2003; 538():175-81; discussion 181. PubMed ID: 15098665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible movement of switch 1 loop of myosin determines actin interaction.
    Kintses B; Gyimesi M; Pearson DS; Geeves MA; Zeng W; Bagshaw CR; Málnási-Csizmadia A
    EMBO J; 2007 Jan; 26(1):265-74. PubMed ID: 17213877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural rearrangements in the active site of smooth-muscle myosin.
    Robertson CI; Gaffney DP; Chrin LR; Berger CL
    Biophys J; 2005 Sep; 89(3):1882-92. PubMed ID: 15951390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum energy reaction profiles for ATP hydrolysis in myosin.
    Grigorenko BL; Kaliman IA; Nemukhin AV
    J Mol Graph Model; 2011 Nov; 31():1-4. PubMed ID: 21839658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography.
    Málnási-Csizmadia A; Woolley RJ; Bagshaw CR
    Biochemistry; 2000 Dec; 39(51):16135-46. PubMed ID: 11123942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling.
    Grigorenko BL; Rogov AV; Topol IA; Burt SK; Martinez HM; Nemukhin AV
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7057-61. PubMed ID: 17438284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: The ATPase mechanism of myosin and actomyosin.
    Geeves MA
    Biopolymers; 2016 Aug; 105(8):483-91. PubMed ID: 27061920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes.
    Thomas DD; Ramachandran S; Roopnarine O; Hayden DW; Ostap EM
    Biophys J; 1995 Apr; 68(4 Suppl):135S-141S. PubMed ID: 7787056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.
    Kiani FA; Fischer S
    J Biol Chem; 2013 Dec; 288(49):35569-80. PubMed ID: 24165121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236.
    Frye JJ; Klenchin VA; Bagshaw CR; Rayment I
    Biochemistry; 2010 Jun; 49(23):4897-907. PubMed ID: 20459085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.