These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 11806916)
1. Evidence for a light-induced H(+) conductance in the eye of the green alga Chlamydomonas reinhardtii. Ehlenbeck S; Gradmann D; Braun FJ; Hegemann P Biophys J; 2002 Feb; 82(2):740-51. PubMed ID: 11806916 [TBL] [Abstract][Full Text] [Related]
2. Two light-activated conductances in the eye of the green alga Volvox carteri. Braun FJ; Hegemann P Biophys J; 1999 Mar; 76(3):1668-78. PubMed ID: 10049347 [TBL] [Abstract][Full Text] [Related]
3. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions. Nonnengässer C; Holland EM; Harz H; Hegemann P Biophys J; 1996 Feb; 70(2):932-8. PubMed ID: 8789110 [TBL] [Abstract][Full Text] [Related]
4. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. Holland EM; Braun FJ; Nonnengässer C; Harz H; Hegemann P Biophys J; 1996 Feb; 70(2):924-31. PubMed ID: 8789109 [TBL] [Abstract][Full Text] [Related]
5. Modeling light-induced currents in the eye of Chlamydomonas reinhardtii. Gradmann D; Ehlenbeck S; Hegemann P J Membr Biol; 2002 Sep; 189(2):93-104. PubMed ID: 12235485 [TBL] [Abstract][Full Text] [Related]
6. All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Derguini F; Mazur P; Nakanishi K; Starace DM; Saranak J; Foster KW Photochem Photobiol; 1991 Dec; 54(6):1017-21. PubMed ID: 1775526 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light. Tolstygina IV; Antal TK; Kosourov SN; Krendeleva TE; Rubin AB; Tsygankov AA Biotechnol Bioeng; 2009 Mar; 102(4):1055-61. PubMed ID: 18985615 [TBL] [Abstract][Full Text] [Related]
8. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Sineshchekov OA; Jung KH; Spudich JL Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8689-94. PubMed ID: 12060707 [TBL] [Abstract][Full Text] [Related]
9. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Jo JH; Lee DS; Park JM Biotechnol Prog; 2006; 22(2):431-7. PubMed ID: 16599558 [TBL] [Abstract][Full Text] [Related]
10. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM. François L; Fortin C; Campbell PG Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821 [TBL] [Abstract][Full Text] [Related]
11. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii. Part II: Definition of model-based protocols and experimental validation. Degrenne B; Pruvost J; Titica M; Takache H; Legrand J Biotechnol Bioeng; 2011 Oct; 108(10):2288-99. PubMed ID: 21520019 [TBL] [Abstract][Full Text] [Related]
12. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Tsunoda SP; Hegemann P Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga. Sanyal SK; Awasthi M; Ranjan P; Sharma S; Pandey GK; Kateriya S Int J Biol Macromol; 2023 Aug; 245():125492. PubMed ID: 37343610 [TBL] [Abstract][Full Text] [Related]
14. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. Laurinavichene T; Tolstygina I; Tsygankov A J Biotechnol; 2004 Oct; 114(1-2):143-51. PubMed ID: 15464608 [TBL] [Abstract][Full Text] [Related]
15. Effect of prolonged hypoxia in autotrophic conditions in the hydrogen production by the green microalga Chlamydomonas reinhardtii in photobioreactor. Degrenne B; Pruvost J; Legrand J Bioresour Technol; 2011 Jan; 102(2):1035-43. PubMed ID: 20817442 [TBL] [Abstract][Full Text] [Related]
16. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1. Luck M; Hegemann P J Plant Physiol; 2017 Oct; 217():77-84. PubMed ID: 28784569 [TBL] [Abstract][Full Text] [Related]
17. Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii. Morlon H; Fortin C; Adam C; Garnier-Laplace J Environ Toxicol Chem; 2006 May; 25(5):1408-17. PubMed ID: 16704076 [TBL] [Abstract][Full Text] [Related]
18. The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. Fuhrmann M; Stahlberg A; Govorunova E; Rank S; Hegemann P J Cell Sci; 2001 Nov; 114(Pt 21):3857-63. PubMed ID: 11719552 [TBL] [Abstract][Full Text] [Related]
19. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Li X; Gutierrez DV; Hanson MG; Han J; Mark MD; Chiel H; Hegemann P; Landmesser LT; Herlitze S Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17816-21. PubMed ID: 16306259 [TBL] [Abstract][Full Text] [Related]
20. Chlamydomonas reinhardtii in the landscape of pigments. Grossman AR; Lohr M; Im CS Annu Rev Genet; 2004; 38():119-73. PubMed ID: 15568974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]