BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11806921)

  • 41. Precision vs flexibility in GPCR signaling.
    Elgeti M; Rose AS; Bartl FJ; Hildebrand PW; Hofmann KP; Heck M
    J Am Chem Soc; 2013 Aug; 135(33):12305-12. PubMed ID: 23883288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transducin-alpha C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin.
    Acharya S; Saad Y; Karnik SS
    J Biol Chem; 1997 Mar; 272(10):6519-24. PubMed ID: 9045677
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conserved Tyr223(5.58) plays different roles in the activation and G-protein interaction of rhodopsin.
    Elgeti M; Kazmin R; Heck M; Morizumi T; Ritter E; Scheerer P; Ernst OP; Siebert F; Hofmann KP; Bartl FJ
    J Am Chem Soc; 2011 May; 133(18):7159-65. PubMed ID: 21506561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depalmitoylation of rhodopsin with hydroxylamine.
    Pepperberg DR; Morrison DF; O'Brien PJ
    Methods Enzymol; 1995; 250():348-61. PubMed ID: 7651164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups.
    Rath P; DeGrip WJ; Rothschild KJ
    Biophys J; 1998 Jan; 74(1):192-8. PubMed ID: 9449322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface.
    Scheerer P; Heck M; Goede A; Park JH; Choe HW; Ernst OP; Hofmann KP; Hildebrand PW
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10660-5. PubMed ID: 19541654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of rhodopsin catalyzed G-protein GTP-binding using [35S] GTP gamma S--effects of regeneration and hydroxylamine.
    Cook NJ; Pellicone C; Virmaux N
    Biochem Int; 1985 Apr; 10(4):647-53. PubMed ID: 3927920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrogen bonding changes of internal water molecules in rhodopsin during metarhodopsin I and metarhodopsin II formation.
    Rath P; Delange F; Degrip WJ; Rothschild KJ
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):713-7. PubMed ID: 9445403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R; Heck M; Sommer ME
    Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect.
    Delange F; Merkx M; Bovee-Geurts PH; Pistorius AM; Degrip WJ
    Eur J Biochem; 1997 Jan; 243(1-2):174-80. PubMed ID: 9030737
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy.
    DeLange F; Bovee-Geurts PH; Pistorius AM; Rothschild KJ; DeGrip WJ
    Biochemistry; 1999 Oct; 38(40):13200-9. PubMed ID: 10529192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy.
    Farrens DL; Khorana HG
    J Biol Chem; 1995 Mar; 270(10):5073-6. PubMed ID: 7890614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA; Arimoto R; Marshall GR; Kisselev OG
    Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Interaction between rhodopsin intermediates and G-protein transducin on the outer segment membrane of photoreceptor cells].
    Imai H; Morizumi T; Shichida Y
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1220-5. PubMed ID: 16104588
    [No Abstract]   [Full Text] [Related]  

  • 58. Effects of differential sulfhydryl group-specific labeling on the rhodopsin and guanine nucleotide binding activities of transducin.
    Ortiz JO; Bubis J
    Arch Biochem Biophys; 2001 Mar; 387(2):233-42. PubMed ID: 11370846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Competition between lithium and magnesium ions for the G-protein transducin in the guanosine 5'-diphosphate bound conformation.
    Srinivasan C; Toon J; Amari L; Abukhdeir AM; Hamm H; Geraldes CF; Ho YK; Mota de Freitas D
    J Inorg Biochem; 2004 May; 98(5):691-701. PubMed ID: 15134914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface.
    Imamoto Y; Kataoka M; Tokunaga F; Palczewski K
    Biochemistry; 2000 Dec; 39(49):15225-33. PubMed ID: 11106502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.