These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11807130)

  • 41. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.).
    Koeslin-Findeklee F; Rizi VS; Becker MA; Parra-Londono S; Arif M; Balazadeh S; Mueller-Roeber B; Kunze R; Horst WJ
    Plant Sci; 2015 Apr; 233():174-185. PubMed ID: 25711825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of initial organic N reserves and residual leaf area on growth, N uptake, N partitioning and N storage in alfalfa (Medicago sativa) during post-cutting regrowth.
    Meuriot F; Avice JC; Simon JC; Laine P; Decau ML; Ourry A
    Ann Bot; 2004 Aug; 94(2):311-21. PubMed ID: 15271775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An immunoreactive protein to wheat-germ agglutinin antibody is induced in oat roots following invasion of the cereal cyst nematode Heterodera avenae, and by jasmonate.
    Oka Y; Chet I; Spiegel Y
    Mol Plant Microbe Interact; 1997 Nov; 10(8):961-9. PubMed ID: 9353943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus.
    Desclos-Théveniau M; Coquet L; Jouenne T; Etienne P
    Plant Biol (Stuttg); 2015 Mar; 17(2):408-18. PubMed ID: 25294336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model.
    Jullien A; Mathieu A; Allirand JM; Pinet A; de Reffye P; Cournède PH; Ney B
    Ann Bot; 2011 Apr; 107(5):765-79. PubMed ID: 20980324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus).
    Coleto I; de la Peña M; Rodríguez-Escalante J; Bejarano I; Glauser G; Aparicio-Tejo PM; González-Moro MB; Marino D
    BMC Plant Biol; 2017 Sep; 17(1):157. PubMed ID: 28931380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses.
    Merkouropoulos G; Shirsat AH
    Planta; 2003 Jul; 217(3):356-66. PubMed ID: 14520562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape?
    Abdallah M; Etienne P; Ourry A; Meuriot F
    Plant Sci; 2011 Mar; 180(3):511-20. PubMed ID: 21421399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of (9Z)-12-hydroxy-9-dodecenoic acid and methyl jasmonate on plant protein phosphorylation.
    Tarchevsky IA; Karimova FG; Grechkin AN; Moukhametchina NU
    Biochem Soc Trans; 2000 Dec; 28(6):870-1. PubMed ID: 11171238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon.
    Napoleão TA; Soares G; Vital CE; Bastos C; Castro R; Loureiro ME; Giordano A
    Plant Sci; 2017 Oct; 263():46-54. PubMed ID: 28818383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues.
    Malagoli P; Laine P; Rossato L; Ourry A
    Ann Bot; 2005 Jun; 95(7):1187-98. PubMed ID: 15802311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate, wounding and insect attack in Brassica napus.
    Sarosh BR; Meijer J
    Plant Mol Biol; 2007 Jul; 64(4):425-38. PubMed ID: 17401749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative Transcriptome Analysis in Oilseed Rape (
    Tang W; He X; Qian L; Wang F; Zhang Z; Sun C; Lin L; Guan C
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31121949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling nitrogen uptake in oilseed rape cv Capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data.
    Malagoli P; Lainé P; Le Deunff E; Rossato L; Ney B; Ourry A
    Plant Physiol; 2004 Jan; 134(1):388-400. PubMed ID: 14671012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of vegetative storage proteins to seasonal nitrogen variations in the young shoots of peach trees (Prunus persica L. Batsch).
    Gomez L; Faurobert M
    J Exp Bot; 2002 Dec; 53(379):2431-9. PubMed ID: 12432035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart.
    Taipalensuu J; Eriksson S; Rask L
    Eur J Biochem; 1997 Dec; 250(3):680-8. PubMed ID: 9461290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling.
    Sharma P; Chatterjee M; Burman N; Khurana JP
    Plant Cell Environ; 2014 Apr; 37(4):961-77. PubMed ID: 24117455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape.
    Dellero Y; Clouet V; Marnet N; Pellizzaro A; Dechaumet S; Niogret MF; Bouchereau A
    J Exp Bot; 2020 Mar; 71(6):2098-2111. PubMed ID: 31807778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zn deficiency in Brassica napus induces Mo and Mn accumulation associated with chloroplast proteins variation without Zn remobilization.
    Billard V; Maillard A; Garnica M; Cruz F; Garcia-Mina JM; Yvin JC; Ourry A; Etienne P
    Plant Physiol Biochem; 2015 Jan; 86():66-71. PubMed ID: 25438138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.
    Yan H; Filardo F; Hu X; Zhao X; Fu D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.