BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 11807574)

  • 1. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accuracy of interceptive action in time and space.
    Tresilian JR
    Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic variation in performance of an interceptive action with changes in the temporal constraints.
    Tresilian JR; Houseman JH
    Q J Exp Psychol A; 2005 Apr; 58(3):447-66. PubMed ID: 16025757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hitting moving targets with a continuously changing temporal window.
    de la Malla C; López-Moliner J
    Exp Brain Res; 2015 Sep; 233(9):2507-15. PubMed ID: 26003129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling.
    Fautrelle L; Barbieri G; Ballay Y; Bonnetblanc F
    Neuroscience; 2011 Oct; 194():124-35. PubMed ID: 21854835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination between posture and movement: interaction between postural and accuracy constraints.
    Berrigan F; Simoneau M; Martin O; Teasdale N
    Exp Brain Res; 2006 Apr; 170(2):255-64. PubMed ID: 16328274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-phasic hitting with constraints on impact velocity and temporal precision.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Hum Mov Sci; 2005 Apr; 24(2):206-17. PubMed ID: 15964647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual asymmetries in the temporal and spatial control of aimed movements.
    van Doorn RR
    Hum Mov Sci; 2008 Aug; 27(4):551-76. PubMed ID: 18639362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hitting moving targets: effects of target speed and dimensions on movement time.
    Brouwer AM; Smeets JB; Brenner E
    Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.
    Vernat JP; Gordon MS
    Scand J Psychol; 2010 Feb; 51(1):75-83. PubMed ID: 19392947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of speeds and force fields on submovements during circular manual tracking in humans.
    Pasalar S; Roitman AV; Ebner TJ
    Exp Brain Res; 2005 May; 163(2):214-25. PubMed ID: 15668793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EFFECTS OF SPATIAL AND TEMPORAL CONSTRAINTS ON INTERCEPTIVE AIMING TASK PERFORMANCE AND GAZE CONTROL.
    Lim J
    Percept Mot Skills; 2015 Oct; 121(2):509-27. PubMed ID: 26445153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic characteristics of aiming movements as a function of temporal and spatial constraints.
    Yao WX; Fischman MG
    Motor Control; 1999 Oct; 3(4):424-35. PubMed ID: 10529505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temporal and/or spatial instructions on the speed-accuracy trade-off of pointing movements in children.
    Rival C; Olivier I; Ceyte H
    Neurosci Lett; 2003 Jan; 336(1):65-9. PubMed ID: 12493603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching and Minimizing Movement Time in Speed-Accuracy Tasks.
    Hsieh TY; Pacheco MM; Newell KM
    Motor Control; 2016 Oct; 20(4):444-58. PubMed ID: 26491846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.