These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 11807574)
41. Trunk-arm coordination in reaching for moving targets in people with Parkinson's disease: comparison between virtual and physical reality. Ma HI; Hwang WJ; Wang CY; Fang JJ; Leong IF; Wang TY Hum Mov Sci; 2012 Oct; 31(5):1340-52. PubMed ID: 22513232 [TBL] [Abstract][Full Text] [Related]
42. How efficient are central mechanisms for the learning and retention of coincident timing actions? Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034 [TBL] [Abstract][Full Text] [Related]
43. Effect of target change during the simple attack in fencing. Gutiérrez-Dávila M; Rojas FJ; Caletti M; Antonio R; Navarro E J Sports Sci; 2013; 31(10):1100-7. PubMed ID: 23421933 [TBL] [Abstract][Full Text] [Related]
45. Movement Speed and Accuracy in Space and Time: The Complementarity of Error Distributions. Pacheco MM; Hsieh TY; Newell KM J Mot Behav; 2019; 51(1):100-112. PubMed ID: 29377777 [TBL] [Abstract][Full Text] [Related]
49. The time course of amplitude specification in brief interceptive actions. Marinovic W; Plooy A; Tresilian JR Exp Brain Res; 2008 Jun; 188(2):275-88. PubMed ID: 18415092 [TBL] [Abstract][Full Text] [Related]
50. How people achieve their amazing temporal precision in interception. Brenner E; Smeets JB J Vis; 2015 Mar; 15(3):. PubMed ID: 25767094 [TBL] [Abstract][Full Text] [Related]
51. No evidence of a lower visual field specialization for visuomotor control. Binsted G; Heath M Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212 [TBL] [Abstract][Full Text] [Related]
52. Hitting moving objects. The dependency of hand velocity on the speed of the target. Brouwer AM; Brenner E; Smeets JB Exp Brain Res; 2000 Jul; 133(2):242-8. PubMed ID: 10968225 [TBL] [Abstract][Full Text] [Related]
53. Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. Gomi H; Abekawa N; Nishida S J Neurosci; 2006 May; 26(20):5301-8. PubMed ID: 16707782 [TBL] [Abstract][Full Text] [Related]
54. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. Biess A; Liebermann DG; Flash T J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899 [TBL] [Abstract][Full Text] [Related]
55. The effect of distance on reaction time in aiming movements. Munro H; Plumb MS; Wilson AD; Williams JH; Mon-Williams M Exp Brain Res; 2007 Nov; 183(2):249-57. PubMed ID: 17639361 [TBL] [Abstract][Full Text] [Related]
56. The effect of expectations on hitting moving targets: influence of the preceding target's speed. de Lussanet MH; Smeets JB; Brenner E Exp Brain Res; 2001 Mar; 137(2):246-8. PubMed ID: 11315554 [TBL] [Abstract][Full Text] [Related]
57. Prospective versus predictive control in timing of hitting a falling ball. Katsumata H; Russell DM Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106 [TBL] [Abstract][Full Text] [Related]
58. Models for the extrapolation of target motion for manual interception. Soechting JF; Juveli JZ; Rao HM J Neurophysiol; 2009 Sep; 102(3):1491-502. PubMed ID: 19571194 [TBL] [Abstract][Full Text] [Related]
59. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation? Chardenon A; Montagne G; Laurent M; Bootsma RJ Exp Brain Res; 2004 Sep; 158(1):100-8. PubMed ID: 15042262 [TBL] [Abstract][Full Text] [Related]
60. Discrete and cyclical units of action in a mixed target pair aiming task. Buchanan JJ; Park JH; Ryu YU; Shea CH Exp Brain Res; 2003 Jun; 150(4):473-89. PubMed ID: 12739091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]