These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11807942)

  • 61. The CXXC motif at the N terminus of an alpha-helical peptide.
    Iqbalsyah TM; Moutevelis E; Warwicker J; Errington N; Doig AJ
    Protein Sci; 2006 Aug; 15(8):1945-50. PubMed ID: 16877711
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle.
    Chartron J; Shiau C; Stout CD; Carroll KS
    Biochemistry; 2007 Apr; 46(13):3942-51. PubMed ID: 17352498
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The enzymology and biochemistry of methionine sulfoxide reductases.
    Boschi-Muller S; Olry A; Antoine M; Branlant G
    Biochim Biophys Acta; 2005 Jan; 1703(2):231-8. PubMed ID: 15680231
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell.
    Chivers PT; Laboissière MC; Raines RT
    EMBO J; 1996 Jun; 15(11):2659-67. PubMed ID: 8654363
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protein-protein interaction as a powering source of oxidoreductive reactivity.
    Lin TY
    Mol Biosyst; 2010 Aug; 6(8):1454-62. PubMed ID: 20473443
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Systematic exploration of thioredoxin target proteins in plant mitochondria.
    Yoshida K; Noguchi K; Motohashi K; Hisabori T
    Plant Cell Physiol; 2013 Jun; 54(6):875-92. PubMed ID: 23444301
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Insights into the role of the metal binding site in methionine-R-sulfoxide reductases B.
    Olry A; Boschi-Muller S; Yu H; Burnel D; Branlant G
    Protein Sci; 2005 Nov; 14(11):2828-37. PubMed ID: 16251365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Peptide ligands specific to the oxidized form of Escherichia coli thioredoxin.
    Scholle MD; Banach BS; Hamdan SM; Richardson CC; Kay BK
    Biochim Biophys Acta; 2008 Nov; 1784(11):1735-41. PubMed ID: 18672101
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The thioredoxin superfamily in oxidative protein folding.
    Lu J; Holmgren A
    Antioxid Redox Signal; 2014 Jul; 21(3):457-70. PubMed ID: 24483600
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
    Roos G; Garcia-Pino A; Van Belle K; Brosens E; Wahni K; Vandenbussche G; Wyns L; Loris R; Messens J
    J Mol Biol; 2007 May; 368(3):800-11. PubMed ID: 17368484
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.
    Yoshida K; Hisabori T
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):E3967-76. PubMed ID: 27335455
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Consolidation of the thioredoxin fold by peptide recognition: interaction between E. coli thioredoxin fragments 1-93 and 94-108.
    Santos J; Marino-Buslje C; Kleinman C; Ermácora MR; Delfino JM
    Biochemistry; 2007 May; 46(17):5148-59. PubMed ID: 17417878
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay.
    Limor-Waisberg K; Ben-Dor S; Fass D
    BMC Evol Biol; 2013 Mar; 13():70. PubMed ID: 23510202
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure of CcmG/DsbE at 1.14 A resolution: high-fidelity reducing activity in an indiscriminately oxidizing environment.
    Edeling MA; Guddat LW; Fabianek RA; Thöny-Meyer L; Martin JL
    Structure; 2002 Jul; 10(7):973-9. PubMed ID: 12121652
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxidative inactivation of thioredoxin as a cellular growth factor and protection by a Cys73-->Ser mutation.
    Gasdaska JR; Kirkpatrick DL; Montfort W; Kuperus M; Hill SR; Berggren M; Powis G
    Biochem Pharmacol; 1996 Dec; 52(11):1741-7. PubMed ID: 8986137
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate.
    Zhang H; Cao D; Cui W; Ji M; Qian X; Zhong L
    Free Radic Biol Med; 2010 Dec; 49(12):2010-8. PubMed ID: 20951799
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Salmonella Typhimurium methionine sulfoxide reductase A (MsrA) prefers TrxA in repairing methionine sulfoxide.
    Dixit SK; Hota DP; Rajan P; Mishra PK; Goswami TK; Mahawar M
    Prep Biochem Biotechnol; 2017 Feb; 47(2):137-142. PubMed ID: 27191346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins.
    Martí MC; Olmos E; Calvete JJ; Díaz I; Barranco-Medina S; Whelan J; Lázaro JJ; Sevilla F; Jiménez A
    Plant Physiol; 2009 Jun; 150(2):646-57. PubMed ID: 19363090
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase.
    Sharov VS; Schöneich C
    Free Radic Biol Med; 2000 Nov; 29(10):986-94. PubMed ID: 11084287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.