These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11808552)
1. Ozone impacts on loblolly pine (Pinus taeda L.) grown in a competitive environment. Barbo DN; Chappelk AH; Somers GL; Miller-Goodman MS; Stolte K Environ Pollut; 2002; 116(1):27-36. PubMed ID: 11808552 [TBL] [Abstract][Full Text] [Related]
2. Effects of tropospheric ozone on loblolly pine seedlings inoculated with root infecting ophiostomatoid fungi. Chieppa J; Chappelka A; Eckhardt L Environ Pollut; 2015 Dec; 207():130-7. PubMed ID: 26367706 [TBL] [Abstract][Full Text] [Related]
3. Growth response of loblolly pine (Pinus taeda L.) seedlings to ozone fumigation. Wiselogel AE; Bailey JK; Newton RJ; Fong F Environ Pollut; 1991; 71(1):43-56. PubMed ID: 15092127 [TBL] [Abstract][Full Text] [Related]
4. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. Tjoelker MG; Luxmoore RJ New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340 [TBL] [Abstract][Full Text] [Related]
5. Assessing plant response to ambient ozone: growth of ozone-sensitive loblolly pine seedlings treated with ethylenediurea or sodium erythorbate. Manning WJ; Flagler RB; Frenkel MA Environ Pollut; 2003; 126(1):73-81. PubMed ID: 12860104 [TBL] [Abstract][Full Text] [Related]
6. Regional assessment of ozone sensitive tree species using bioindicator plants. Coulston JW; Smith GC; Smith WD Environ Monit Assess; 2003 Apr; 83(2):113-27. PubMed ID: 12691526 [TBL] [Abstract][Full Text] [Related]
7. Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. Booker FL; Anttonen S; Heagle AS New Phytol; 1996 Mar; 132(3):483-92. PubMed ID: 26763644 [TBL] [Abstract][Full Text] [Related]
8. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
9. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure. Anderson PD; Palmer B; Houpis JL; Smith MK; Pushnik JC Environ Int; 2003 Jun; 29(2-3):407-13. PubMed ID: 12676234 [TBL] [Abstract][Full Text] [Related]
10. Interaction of ozone exposure and Fusarium subglutinans inoculation on growth and disease development of loblolly pine seedlings. Carey WA; Kelley WD Environ Pollut; 1994; 84(1):35-43. PubMed ID: 15091722 [TBL] [Abstract][Full Text] [Related]
11. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530 [TBL] [Abstract][Full Text] [Related]
12. A survival model for unthinned loblolly pine plantations that incorporates non-planted tree competition, site quality, and incidence of fusiform rust. Lee YJ; Coble DW Bioresour Technol; 2002 Dec; 85(3):301-8. PubMed ID: 12365498 [TBL] [Abstract][Full Text] [Related]
13. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine. Chmura DJ; Tjoelker MG Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305 [TBL] [Abstract][Full Text] [Related]
14. Ozone, acidic rain and soil magnesium effects on growth and foliar pigments of Pinus taeda L. Edwards NT; Taylor GE; Adams MB; Simmons GL; Kelly JM Tree Physiol; 1990 Mar; 6(1):95-104. PubMed ID: 14972964 [TBL] [Abstract][Full Text] [Related]
15. Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labeling. Spence RD; Rykiel EJ; Sharpe PJ Environ Pollut; 1990; 64(2):93-106. PubMed ID: 15092295 [TBL] [Abstract][Full Text] [Related]
16. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Booker FL; Maier CA Tree Physiol; 2001 Jun; 21(9):609-16. PubMed ID: 11390305 [TBL] [Abstract][Full Text] [Related]
18. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. DeLucia EH; George K; Hamilton JG Tree Physiol; 2002 Oct; 22(14):1003-10. PubMed ID: 12359527 [TBL] [Abstract][Full Text] [Related]
19. Variation of gas exchange within native plant species of Switzerland and relationships with ozone injury: an open-top experiment. Zhang J; Ferdinand JA; Vanderheyden DJ; Skelly JM; Innes JL Environ Pollut; 2001; 113(2):177-85. PubMed ID: 11383335 [TBL] [Abstract][Full Text] [Related]
20. Seedling insensitivity to ozone for three conifer species native to Great Smoky Mountains National Park. Neufeld HS; Lee EH; Renfro JR; Hacker WD Environ Pollut; 2000 May; 108(2):141-51. PubMed ID: 15092944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]