BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11808745)

  • 1. Microarray probe selection strategies.
    Tomiuk S; Hofmann K
    Brief Bioinform; 2001 Dec; 2(4):329-40. PubMed ID: 11808745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements.
    Carter SL; Eklund AC; Mecham BH; Kohane IS; Szallasi Z
    BMC Bioinformatics; 2005 Apr; 6():107. PubMed ID: 15850491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.
    Wistow G; Bernstein SL; Wyatt MK; Behal A; Touchman JW; Bouffard G; Smith D; Peterson K
    Mol Vis; 2002 Jun; 8():171-84. PubMed ID: 12107413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant.
    Vodkin LO; Khanna A; Shealy R; Clough SJ; Gonzalez DO; Philip R; Zabala G; Thibaud-Nissen F; Sidarous M; Strömvik MV; Shoop E; Schmidt C; Retzel E; Erpelding J; Shoemaker RC; Rodriguez-Huete AM; Polacco JC; Coryell V; Keim P; Gong G; Liu L; Pardinas J; Schweitzer P
    BMC Genomics; 2004 Sep; 5():73. PubMed ID: 15453914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expressed sequence tag analysis of human retina for the NEIBank Project: retbindin, an abundant, novel retinal cDNA and alternative splicing of other retina-preferred gene transcripts.
    Wistow G; Bernstein SL; Wyatt MK; Ray S; Behal A; Touchman JW; Bouffard G; Smith D; Peterson K
    Mol Vis; 2002 Jun; 8():196-204. PubMed ID: 12107411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in spotted microarray resources for expression profiling.
    Lyons P
    Brief Funct Genomic Proteomic; 2003 Apr; 2(1):21-30. PubMed ID: 15239940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of spotted long oligonucleotide microarrays for gene expression analysis.
    Chou CC; Peck K
    Methods Mol Biol; 2007; 381():213-25. PubMed ID: 17984521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probe design for expression arrays using OligoWiz.
    Wernersson R
    Methods Mol Biol; 2009; 529():23-36. PubMed ID: 19381972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiling using cDNA microarrays.
    Duggan DJ; Bittner M; Chen Y; Meltzer P; Trent JM
    Nat Genet; 1999 Jan; 21(1 Suppl):10-4. PubMed ID: 9915494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative selection: a method for obtaining low-abundance cDNAs using high-density cDNA clone arrays.
    Nelson PS; Hawkins V; Schummer M; Bumgarner R; Ng WL; Ideker T; Ferguson C; Hood L
    Genet Anal; 1999 Dec; 15(6):209-15. PubMed ID: 10609756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining gene expression data from different generations of oligonucleotide arrays.
    Hwang KB; Kong SW; Greenberg SA; Park PJ
    BMC Bioinformatics; 2004 Oct; 5():159. PubMed ID: 15504239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes.
    Yang GP; Ross DT; Kuang WW; Brown PO; Weigel RJ
    Nucleic Acids Res; 1999 Mar; 27(6):1517-23. PubMed ID: 10037815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting unknown sequences with DNA microarrays: explorative probe design strategies.
    Dugat-Bony E; Peyretaillade E; Parisot N; Biderre-Petit C; Jaziri F; Hill D; Rimour S; Peyret P
    Environ Microbiol; 2012 Feb; 14(2):356-71. PubMed ID: 21895914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical framework for genome-wide discovery of biomarker splice variations with GeneChip Human Exon 1.0 ST Arrays.
    Yoshida R; Numata K; Imoto S; Nagasaki M; Doi A; Ueno K; Miyano S
    Genome Inform; 2006; 17(1):88-99. PubMed ID: 17503359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of alternative probe synthesis approaches for gene expression profiling with arrays.
    Vernon SD; Unger ER; Rajeevan M; Dimulescu IM; Nisenbaum R; Campbell CE
    J Mol Diagn; 2000 Aug; 2(3):124-7. PubMed ID: 11229515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling human gene expression with cDNA microarrays.
    Jiang Y; Lueders J; Glatfelter A; Gooden C; Bittner M
    Curr Protoc Hum Genet; 2001 May; Chapter 11():Unit 11.3. PubMed ID: 18428246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating machine learning approaches for aiding probe selection for gene-expression arrays.
    Tobler JB; Molla MN; Nuwaysir EF; Green RD; Shavlik JW
    Bioinformatics; 2002; 18 Suppl 1():S164-71. PubMed ID: 12169544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative subtraction hybridization: an efficient method to isolate large numbers of condition-specific cDNAs.
    Ray A; Macwana S; Ayoubi P; Hall LT; Prade R; Mort AJ
    BMC Genomics; 2004 Mar; 5(1):22. PubMed ID: 15050035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative isoform discrimination by the next generation of expression profiling microarrays.
    Pando MP; Kotraiah V; McGowan K; Bracco L; Einstein R
    Expert Opin Ther Targets; 2006 Aug; 10(4):613-25. PubMed ID: 16848696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple and robust method for preparation of cDNA nylon microarrays.
    Yamakawa H; Yokoyama S; Hirano T; Kitamura H; Ohara O
    DNA Res; 2004 Oct; 11(5):353-60. PubMed ID: 15747583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.