BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 1180933)

  • 1. On the substrate specificity of enol ether formation in rat brain. Metabolism of O-alkyl ethanediol phosphorylethanolamine.
    Baumann WJ; Madson TH; Chang N; Bandi PC; Schmid HH
    Biochem Biophys Res Commun; 1975 Sep; 66(2):717-24. PubMed ID: 1180933
    [No Abstract]   [Full Text] [Related]  

  • 2. Intestinal uptake and metabolism of alkyl acyl glycerophospholipids and of alkyl glycerophospholipids in the rat. Biosynthesis of plasmalogens from ( 3 H)alkyl glycerophosphoryl ( 14 )ethanolamine.
    Paltauf F
    Biochim Biophys Acta; 1972 Mar; 260(3):352-64. PubMed ID: 5038255
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of ether lipids and wax esters in mammalian cells. Specificity of enzymes with regard to carbon chains of substrates.
    Weber N; Richter I
    Biochim Biophys Acta; 1982 May; 711(2):197-207. PubMed ID: 6920284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificities in ether lipid biosynthesis. Metabolism of polyunsaturated fatty acids and alcohols by rat brain microsomes.
    Natarajan V; Schmid HH
    Biochem Biophys Res Commun; 1977 Nov; 79(2):411-6. PubMed ID: 588275
    [No Abstract]   [Full Text] [Related]  

  • 5. Ether lipid metabolism. Incorporation of O-hexadecyl ethanediol into rat brain lipids.
    Schmid HH; Bandi PC; Chang NC; Madson TH; Baumann WJ
    Biochim Biophys Acta; 1975 Dec; 409(3):311-9. PubMed ID: 1203248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of I-hydroxy-2-ketoheptadecane in myelinating brain.
    Muramatsu T; Schmid HH
    Biochim Biophys Acta; 1973 Feb; 296(2):265-70. PubMed ID: 4347328
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural specificity in the formation of glycerol ethers and plasmalogens in myelinating brain.
    Chang NC; Muramatsu T; Schmid HH
    Biochim Biophys Acta; 1973 Jun; 306(3):437-45. PubMed ID: 4726867
    [No Abstract]   [Full Text] [Related]  

  • 8. Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat.
    Rosenberger TA; Oki J; Purdon AD; Rapoport SI; Murphy EJ
    J Lipid Res; 2002 Jan; 43(1):59-68. PubMed ID: 11792723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of unusual lipids in the rat. I. Formation of unsaturated alkyl and alk-I-enyl chains from orally administered alcohols.
    Bandi ZL; Aaes-Jorgensen E; Mangold HK
    Biochim Biophys Acta; 1971 Sep; 239(3):357-67. PubMed ID: 5113497
    [No Abstract]   [Full Text] [Related]  

  • 10. Chain length specificity in the utilization of long chain alcohols for ether lipid biosynthesis in rat brain.
    Natarajan V; Schmid HH
    Lipids; 1977 Oct; 12(10):872-5. PubMed ID: 916829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nonconversion of alkyl acyl choline phosphatides to the corresponding plasmalogens in myelinating rat brain.
    Schmid HH; Muramatsu T; Su KL
    Biochim Biophys Acta; 1972 Jul; 270(3):317-23. PubMed ID: 5041431
    [No Abstract]   [Full Text] [Related]  

  • 12. Formation of ether lipids from isomeric cis-octadecen-1-ols in normal and neoplastic cells: substrate specificity of enzymes with regard to position of double bonds.
    Richter I; Weber N
    Hoppe Seylers Z Physiol Chem; 1981 Aug; 362(8):1163-6. PubMed ID: 6286446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The incorporation of 18O and 14C from long-chain alcohols into the alkyl and alk-1-enyl ethers of phospholipids of developing rat brain.
    Bell OE; Snyder F; Blank ML
    Biochim Biophys Acta; 1971 May; 231(3):579-83. PubMed ID: 5282832
    [No Abstract]   [Full Text] [Related]  

  • 14. Accumulation of fatty alcohol in MCF-7 breast cancer cells.
    Welsh CJ; Robinson M; Warne TR; Pierce JH; Yeh GC; Phang JM
    Arch Biochem Biophys; 1994 Nov; 315(1):41-7. PubMed ID: 7979403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid metabolism in ehrlich ascites tumor cells. II. Turnover rate of ether phospholipids.
    Waku K; Nakazawa Y; Mori W
    J Biochem; 1976 Oct; 80(4):711-6. PubMed ID: 1010841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the incorporation of a long-chain 1,2-alkanediol into diol phospholipids by mammalian brain.
    Chang N; Schmid HH
    Biochem Biophys Res Commun; 1973 Sep; 54(2):648-54. PubMed ID: 4756791
    [No Abstract]   [Full Text] [Related]  

  • 17. On the oxidation of long-chain polyunsaturated alcohols by myelinating rat brain.
    Su KL; Schmid HH
    Biochem Biophys Res Commun; 1972 Jul; 48(1):94-100. PubMed ID: 5041884
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of the enantiomeric I-O-alkyl glycerol ethers in the rat intestinal mucosa in vivo; incorporation into I-O-alkyl and I-O-alk-I'-enyl glycerol lipids.
    Paltauf F
    Biochim Biophys Acta; 1971 Jun; 239(1):38-46. PubMed ID: 5569939
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis of alkyl-ether glycerophospholipids in rat glomerular mesangial cells: evidence for alkyldihydroxyacetone phosphate synthase activity.
    Zanglis A; Lianos EA
    Biochem Biophys Res Commun; 1987 Apr; 144(2):666-73. PubMed ID: 3107558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of alk-1-enyl- and alkyl-glyceryl ethers in neutral lipids and phospholipids.
    Wood R; Snyder F
    Lipids; 1968 Mar; 3(2):129-35. PubMed ID: 17805900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.